## Further Information:

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

This talk will focus on the following two related problems:

(1) What is the minimum number of edges in a graph containing all $n$-vertex planar graphs as subgraphs? A simple construction of Babai, Erdos, Chung, Graham, and Spencer (1982) has $O(n^{3/2})$ edges, which is the best known upper bound.

(2) What is the minimum number of *vertices* in a graph containing all $n$-vertex planar graphs as *induced* subgraphs? Here steady progress has been achieved over the years, culminating in a $O(n^{4/3})$ bound due to Bonamy, Gavoille, and Pilipczuk (2019).

As it turns out, a bound of $n^{1+o(1)}$ can be achieved for each of these two problems. The two constructions are somewhat different but are based on a common technique. In this talk I will first give a gentle introduction to the area and then sketch these constructions. The talk is based on joint works with Vida Dujmović, Louis Esperet, Cyril Gavoille, Piotr Micek, and Pat Morin.