Forthcoming events in this series


Tue, 03 May 2011

14:30 - 15:30
L3

Hajos’ Conjecture is almost always true

Bruce Reed
(McGill)
Abstract

In 1961 Hajos conjectured that if a graph contains no subdivsion of a clique of order t then its chromatic number is less than t. In 1981, Erdos and Fajtlowicz showed that the conjecture is almost always false. We show it is almost always true. This is joint work with Keevash, Mohar, and McDiarmid.

Tue, 08 Mar 2011
14:30
L3

"Random matroids"

Dominic Welsh
(Oxford)
Abstract

I shall describe some recent results about the asymptotic behaviour of matroids.

Specifically almost all matroids are simple and have probability at least 1/2 of being connected.

Also, various quantitative results about rank, number of bases and number and size of circuits of almost all matroids are given. There are many open problems and I shall not assume any previous knowledge of matroids. This is joint work, see below.

1 D. Mayhew, M. Newman, D. Welsh and G. Whittle,

On the asymptotic properties of connected matroids, European J. Combin. to appear

2 J. Oxley, C. Semple, L. Wasrshauer and D. Welsh,

On properties of almost all matroids, (2011) submitted

Tue, 08 Feb 2011
16:30
SR2

"The C_ell -free process".

Lutz Warnke
Abstract

The $C_\ell$-free process starts with the empty graph on $n$ vertices and adds edges chosen uniformly at random, one at a time, subject to the condition that no copy of $C_\ell$ is created. For every $\ell \geq 4$ we show that, with high probability as $n \to \infty$, the maximum degree is $O((n \log n)^{1/(\ell-1)})$, which confirms a conjecture of Bohman and Keevash and improves on bounds of Osthus and Taraz. Combined with previous results this implies that the $C_\ell$-free process typically terminates with $\Theta(n^{\ell/(\ell-1)}(\log n)^{1/(\ell-1)})$ edges, which answers a question of Erd\H{o}s, Suen and Winkler. This is the first result that determines the final number of edges of the more general $H$-free process for a non-trivial \emph{class} of graphs $H$. We also verify a conjecture of Osthus and Taraz concerning the average degree, and obtain a new lower bound on the independence number. Our proof combines the differential equation method with a tool that might be of independent interest: we establish a rigorous way to `transfer' certain decreasing properties from the binomial random graph to the $H$-free process.

Tue, 16 Nov 2010

14:30 - 15:30
L3

Triangles in tripartite graphs

John Talbot
(UCL)
Abstract

How many triangles must a graph of density d contain? This old question due to Erdos was recently answered by Razborov, after many decades of progress by numerous authors.

We will consider the analogous question for tripartite graphs. Given a tripartite graph with prescribed edges densities between each

pair of classes how many triangles must it contain?

Tue, 09 Nov 2010

14:30 - 15:30
L3

Intersecting families of graphs

David Ellis
(Cambridge)
Abstract

A family of graphs F on a fixed set of n vertices is said to be triangle-intersecting if for any two graphs G,H in F, the intersection of G and H contains a triangle. Simonovits and Sos conjectured that such a family has size at most (1/8)2^{\binom{n}{2}}, and that equality holds only if F
consists of all graphs containing some fixed triangle. Recently, the author, Yuval Filmus and Ehud Friedgut proved a strengthening of this conjecture, namely that if F is an odd-cycle-intersecting family of graphs, then |F| \leq (1/8) 2^{\binom{n}{2}}. Equality holds only if F consists of all graphs containing some fixed triangle. A stability result also holds: an odd-cycle-intersecting family with size close to the maximum must be close to a family of the above form. We will outline proofs of these results, which use Fourier analysis, together with an analysis of the properties of random cuts in graphs, and some results in the theory of Boolean functions. We will then discuss some related open questions.

All will be based on joint work with Yuval Filmus (University of Toronto) and Ehud Friedgut (Hebrew University of Jerusalem).

Tue, 26 Oct 2010

14:30 - 15:30
L3

When not knowing can slow you down

Raphael Clifford
(Bristol)
Abstract

Combinatorial pattern matching is a subject which has given us fast and elegant algorithms for a number of practical real world problems as well as being of great theoretical interest. However, when single character wildcards or so-called "don't know" symbols are introduced into the input, classic methods break down and it becomes much more challenging to find provably fast solutions. This talk will give a brief overview of recent results in the area of pattern matching with don't knows and show how techniques from fields as disperse FFTs, group testing and algebraic coding theory have been required to make any progress. We will, if time permits, also discuss the main open problems in the area.

Tue, 19 Oct 2010

14:30 - 15:30
L3

Sorting under Partial Information and Partial Order Entropy

Jean Cardinal
(Universite Libre de Bruxelles)
Abstract

We revisit the problem of sorting under partial information: sort a finite set given the outcomes of comparisons between some pairs of elements. The input is a partially ordered set P, and solving the problem amounts to discovering an unknown linear extension of P, using pairwise comparisons. The information-theoretic lower bound on the number of comparisons needed in the worst case is log e(P), the binary logarithm of the number of linear extensions of P. In a breakthrough paper, Jeff Kahn and Jeong Han Kim (STOC 1992) showed that there exists a polynomial-time sorting algorithm achieving this bound up to a constant factor. They established a crucial link between the entropy of the input partial order and the information-theoretic lower bound. However, their algorithm invokes the ellipsoid algorithm at each iteration for determining the next comparison, making it unpractical. We develop efficient algorithms for sorting under partial information, derived from approximation and exact algorithms for computing the partial order entropy.

This is joint work with S. Fiorini, G. Joret, R. Jungers, and I. Munro.

Tue, 12 Oct 2010

14:30 - 15:30
L3

A couple of easy cases for counting Euler tours

Mary Cryan
(Edinburgh)
Abstract

The problem of checking existence for an Euler tour of a graph is trivial (are all vertex degrees even?). The problem of counting (or even approximate counting) Euler tours seems to be very difficult. I will describe two simple classes of graphs where the problem can be

solved exactly in polynomial time. And also talk about the many many classes of graphs where no positive results are known.

Tue, 08 Jun 2010

14:30 - 15:30
L3

Rigidity of direction-length frameworks

Bill Jackson
(QMUL)
Abstract

Consider a configuration of points in $d$-dimensional Euclidean space

together with a set of constraints

which fix the direction or the distance between some pairs of points.

Basic questions are whether the constraints imply that the configuration

is unique or locally unique up to congruence, and whether it is bounded. I

will describe some solutions

and partial solutions to these questions.

Fri, 04 Jun 2010

17:00 - 18:00
L3

Sudoku... More than just a game

Tristan Denley
(Austin Peay)
Abstract

Whether as the sudoku puzzles of popular culture or as

restricted coloring problems on graphs or hypergraphs, completing partial

Latin squares and cubes present a framework for a variety of intriguing

problems. In this talk we will present several recent results on

completing partial Latin squares and cubes.

Tue, 01 Jun 2010

14:30 - 15:30
L3

Subspaces in sumsets: a problem of Bourgain and Green

Tom Sanders
(Cambridge)
Abstract

Suppose that $A \subset \mathbb F_2^n$ has density $\Omega(1)$. How

large a subspace is $A+A:=\{a+a’:a,a’ \in A\}$ guaranteed to contain? We

discuss this problem and how the the result changes as the density

approaches $1/2$.

Tue, 25 May 2010

14:30 - 15:30
L3

Embedding spanning graphs into dense and sparse graphs

Anusch Taraz
(Munich)
Abstract

In this talk we will first survey results which guarantee the existence of

spanning subgraphs in dense graphs. This will lead us to the proof of the

bandwidth-conjecture by Bollobas and Komlos, which states that any graph

with minimum degree at least $(1-1/r+\epsilon)n$ contains every r-chromatic graph

with bounded maximum degree and sublinear bandwidth as a spanning subgraph.

We will then move on to discuss the analogous question for a host graph that

is obtained by starting from a sparse random graph G(n,p) and deleting a

certain portion of the edges incident at every vertex.

This is joint work with J. Boettcher, Y. Kohayakawa and M. Schacht.

Tue, 18 May 2010

16:30 - 17:30
SR2

Phase boundary fluctuation and growth models

Alan Hammond
(University of Oxford)
Abstract

The Wulff droplet arises by conditioning a spin system in a dominant

phase to have an excess of signs of opposite type. These gather

together to form a droplet, with a macroscopic Wulff profile, a

solution to an isoperimetric problem.

I will discuss recent work proving that the phase boundary that

delimits the signs of opposite type has a characteristic scale, both

at the level of exponents and their logarithmic corrections.

This behaviour is expected to be shared by a broad class of stochastic

interface models in the Kardar-Parisi-Zhang class. Universal

distributions such as Tracy-Widom arise in this class, for example, as

the maximum behaviour of repulsive particle systems. time permitting,

I will explain how probabilistic resampling ideas employed in spin

systems may help to develop a qualitative understanding of the random

mechanisms at work in the KPZ class.

Tue, 18 May 2010

14:30 - 15:30
L3

Trading 'tween crossings, crosscaps, and handles

Dan Archdeacon
(University of Vermont)
Abstract

Given a graph we want to draw it in the plane; well we *want* to draw it in the plane, but sometimes we just can't. So we resort to various compromises. Sometimes we add crossings and try to minimize the crossings. Sometimes we add handles and try to minimize the number of handles. Sometimes we add crosscaps and try to minimize the number of crosscaps.

Sometimes we mix these parameters: add a given number of handles (or crosscaps) and try to minimize the number of crossings on that surface. What if we are willing to trade: say adding a handle to reduce the number of crossings? What can be said about the relative value of such a trade? Can we then add a second handle to get an even greater reduction in crossings? If so, why didn't we trade the second handle in the first place? What about a third handle?

The crossing sequence cr_1, cr_2, ... , cr_i, ... has terms the minimum number of crossings over all drawings of G on a sphere with i handles attached. The non-orientable crossing sequence is defined similarly. In this talk we discuss these crossing sequences.

By Dan Archdeacon, Paul Bonnington, Jozef Siran, and citing works of others.

Tue, 04 May 2010

16:30 - 17:30
SR2

Multigraph limits and aging of the edge reconnecting model

Balázs Ráth
(Budapest)
Abstract

We define the edge reconnecting model, a random multigraph evolving in time. At each time step we change one endpoint of a uniformly chosen edge: the new endpoint is chosen by linear preferential attachment. We consider a sequence of edge reconnecting models where the sequence of initial multigraphs is convergent in a sense which is a natural generalization of the Lovász-Szegedy notion of convergence of dense graph sequences. We investigate how the limit objects evolve under the edge reconnecting dynamics if we rescale time properly: we give the complete characterization of the time evolution of the limiting object from its initial state up to the stationary state using the theory of exchangeable arrays, the Pólya urn model, queuing and diffusion processes. The number of parallel edges and the degrees evolve on different timescales and because of this the model exhibits “aging”.

Tue, 04 May 2010

14:30 - 15:30
L3

Independent sets in bipartite graphs and approximating the partition function of the ferromagnetic Potts model

Leslie Goldberg
(University of Liverpool)
Abstract

This talk considers the problem of sampling an independent set uniformly at random from a bipartite graph (equivalently, the problem of approximately counting independent sets in a bipartite graph). I will start by discussing some natural Markov chain approaches to this problem, and show why these lead to slow convergence. It turns out that the problem is interesting in terms of computational complexity – in fact, it turns out to be equivalent to a large number of other problems, for example, approximating the partition function of the “ferromagnetic Ising model’’ (a 2-state particle model from statistical physics) in the presence of external fields (which are essentially vertex weights). These problems are all complete with respect to approximation-preserving reductions for a logically-defined complexity class, which means that if they can be approximated efficiently, so can the entire class. In recent work, we show some connections between this class of problems and the problem of approximating the partition function of the ``ferromagnetic Potts model’’ which is a generalisation of the Ising model—our result holds for q>2 spins. (This corresponds to the approximation problem for the Tutte polynomial in the upper quadrant

above the hyperbola q=2.) That result was presented in detail at a recent talk given by Mark Jerrum at Oxford’s one-day meeting in combinatorics. So I will just give a brief description (telling you what the Potts model is and what the result is) and then conclude with some more recently discovered connections to counting graph homomorphisms and approximating the cycle index polynomial.

Tue, 09 Mar 2010

14:30 - 15:30
L3

Establishing Complexity of Problems Parameterized Above Average

Gregory Z. Gutin
(Royal Holloway)
Abstract

In the Max Acyclic Subdigraph problem we are given a digraph $D$ and ask whether $D$ contains an acyclic subdigraph with at least $k$ arcs. The problem is NP-complete and it is easy to see that the problem is fixed-parameter tractable, i.e., there is an algorithm of running time $f(k)n$ for solving the problem, where $f$ is a computable function of $k$ only and $n=|V(D)|$. The last result follows from the fact that the average number of arcs in an acyclic subdigraph of $D$ is $m/2$, where $m$ is the number of arcs in $D$. Thus, it is natural to ask another question: does $D$ have an acyclic subdigraph with at least $m/2 +k$ arcs?

Mahajan, Raman and Sikdar (2006, 2009), and by Benny Chor (prior to 2006) asked whether this and other problems parameterized above the average are fixed-parameter tractable (the problems include Max $r$-SAT, Betweenness, and Max Lin). Most of there problems have been recently shown to be fixed-parameter tractable.

Methods involved in proving these results include probabilistic inequalities, harmonic analysis of real-valued

functions with boolean domain, linear algebra, and algorithmic-combinatorial arguments. Some new results obtained in this research are of potential interest for several areas of discrete mathematics and computer science. The examples include a new variant of the hypercontractive inequality and an association of Fourier expansions of real-valued functions with boolean domain with weighted systems of linear equations over $F^n_2$.

I’ll mention results obtained together with N. Alon, R. Crowston, M. Jones, E.J. Kim, M. Mnich, I.Z. Ruzsa, S. Szeider, and A. Yeo.

Tue, 02 Mar 2010

14:30 - 15:30
L3

Decomposition of graphs and $\chi$-boundedness

Nicolas Trotignon
(Paris)
Abstract

A graph is $\chi$-bounded with a function $f$ is for all induced subgraph H of G, we have $\chi(H) \le f(\omega(H))$.  Here, $\chi(H)$ denotes the chromatic number of $H$, and $\omega(H)$ the size of a largest clique in $H$. We will survey several results saying that excluding various kinds of induced subgraphs implies $\chi$-boundedness. More precisely, let $L$ be a set of graphs. If a $C$ is the class of all graphs that do not any induced subgraph isomorphic to a member of $L$, is it true that there is a function $f$ that $\chi$-bounds all graphs from $C$? For some lists $L$, the answer is yes, for others, it is no.  

A decomposition theorems is a theorem saying that all graphs from a given class are either "basic" (very simple), or can be partitioned into parts with interesting relationship. We will discuss whether proving decomposition theorems is an efficient method to prove $\chi$-boundedness. 

Tue, 23 Feb 2010

14:30 - 15:30
L3

Line Graphs and Beyond

Lowell Beineke
(Purdue)
Abstract

The line graph operation, in which the edges of one graph are taken as the vertices of a new graph with adjacency preserved, is arguably the most interesting of graph transformations.  In this survey, we will begin looking at characterisations of line graphs, focusing first on results related to our set of nine forbidden subgraphs. This will be followed by a discussion of some generalisations of line graphs, including our investigations into the Krausz dimension of a graph G, defined as the minimum, over all partitions of the edge-set of G into complete subgraphs, of the maximum number of subgraphs containing any vertex (the maximum in Krausz's characterisation of line graphs being 2).

Tue, 23 Feb 2010
14:30
L3

Line Graphs and Beyond

Lowell Beineke
(Purdue)
Abstract

The line graph operation, in which the edges of one graph are taken as the vertices of a new graph with adjacency preserved, is arguably the most interesting of graph transformations. In this survey, we will begin looking at characterisations of line graphs, focusing first on results related to our set of nine forbidden subgraphs. This will be followed by a discussion of some generalisations of line graphs, including our investigations into the Krausz dimension of a graph G, defined as the minimum, over all partitions of the edge-set of G into complete subgraphs, of the maximum number of subgraphs containing any vertex (the maximum in Krausz's characterisation of line graphs being 2).

Tue, 16 Feb 2010

14:30 - 15:30
L3

Boundary properties of graphs

Vadim Lozin
(Warwick)
Abstract

The notion of a boundary graph property is a relaxation of that of a

minimal property. Several fundamental results in graph theory have been obtained in

terms of identifying minimal properties. For instance, Robertson and Seymour showed that

there is a unique minimal minor-closed property with unbounded tree-width (the planar

graphs), while Balogh, Bollobás and Weinreich identified nine minimal hereditary

properties of labeled graphs with the factorial speed of growth. However, there are

situations where the notion of minimal property is not applicable. A typical example of this type

is given by graphs of large girth. It is known that for each particular value of k, the

graphs of girth at least k are of unbounded tree-width and their speed of growth is

superfactorial, while the limit property of this sequence (i.e., the acyclic graphs) has bounded

tree-width and its speed of growth is factorial. To overcome this difficulty, the notion of

boundary properties of graphs has been recently introduced. In the present talk, we use this

notion in order to identify some classes of graphs which are well-quasi-ordered with

respect to the induced subgraph relation.

Tue, 09 Feb 2010

14:30 - 15:30
L3

Combinatorial theorems in random sets

David Conlon
(Cambridge)
Abstract

The famous theorem of Szemerédi says that for any natural number $k$ and any $a>0$ there exists $n$ such that if $N\ge n$ then any subset $A$ of the set $[N] =\{1, 2,\ldots , N\}$ of size $|A| \ge a N$ contains an arithmetic progression of length $k$. We consider the question of when such a theorem holds in a random set. More precisely, we say that a set $X$ is $(a, k)$-Szemerédi if every subset $Y$ of $X$ that contains at least $a|X|$ elements contains an arithmetic progression of length $k$. Let $[N]_p$ be the random set formed by taking each element of $[N]$ independently with probability $p$. We prove that there is a threshold at about $p = N^{-1/(k-1)}$ where the probability that $[N]_p$ is $(a, k)$-Szemerédi changes from being almost surely 0 to almost surely 1.

There are many other similar problems within combinatorics. For example, Turán’s theorem and Ramsey’s theorem may be relativised, but until now the precise probability thresholds were not known. Our method seems to apply to all such questions, in each case giving the correct threshold. This is joint work with Tim Gowers.

Tue, 26 Jan 2010

14:30 - 15:30
L3

Tree packing conjectures; Graceful tree labelling conjecture

Jan Hladky
(University of Warwick)
Abstract

A family of graphs $H_1,...,H_k$ packs into a graph $G$ if there exist pairwise edge-disjoint copies of $H_1,...,H_k$ in $G$. Gyarfas and Lehel conjectured that any family $T_1, ..., T_n$ of trees of respective orders $1, ..., n$ packs into $K_n$. A similar conjecture of Ringel asserts that $2n$ copies of any trees $T$ on $n+1$ vertices pack into $K_{2n+1}$. In a joint work with Boettcher, Piguet, Taraz we proved a theorem about packing trees. The theorem implies asymptotic versions of the above conjectures for families of trees of bounded maximum degree. Tree-indexed random walks controlled by the nibbling method are used in the proof.

In a joint work with Adamaszek, Adamaszek, Allen and Grosu, we used the nibbling method to prove the approximate version of the related Graceful Tree Labelling conjecture for trees of bounded degree.

In the talk we shall give proofs of both results. We shall discuss possible extensions thereof to trees of unbounded degree.

Tue, 19 Jan 2010

14:30 - 15:30
L3

Shadows and intersections: stability and new proofs

Peter Keevash
(QMUL)
Abstract
We give a short new proof of a version of the Kruskal-Katona theorem due to Lov\'asz. Our method can be extended to a stability result, describing the approximate structure of configurations that are close to being extremal, which answers a question of Mubayi. This in turn leads to another combinatorial proof of a stability theorem for intersecting families, which was originally obtained by Friedgut using spectral techniques and then sharpened by Keevash and Mubayi by means of a purely combinatorial result of Frankl. We also give an algebraic perspective on these problems, giving yet another proof of intersection stability that relies on expansion of a certain Cayley graph of the symmetric group, and an algebraic generalisation of Lov\'asz’s theorem that answers a question of Frankl and Tokushige.
Tue, 24 Nov 2009

14:30 - 15:30
L3

Dense $H$-free graphs are almost $(\chi(H)-1)$-partite

Peter Allen
(Warwick)
Abstract
Zarankiewicz showed that no $K_{r+1}$-free graph with minimum degree exceeding $(r-1)n/r$ can exist. This was generalised by Erdös and Stone, who showed that $K_{r+1}$ may be replaced by any graph $H$ with chromatic number $r+1$ at the cost of a $o(n)$ term added to the minimum degree.

Andr\'asfai, Erdös and S\'os proved a stability result for Zarankiewicz' theorem: $K_{r+1}$-free graphs with minimum degree exceeding $(3r-4)n/(3r-1)$ are forced to be $r$-partite. Recently, Alon and Sudakov used the Szemer\'edi Regularity Lemma to obtain a corresponding stability result for the Erdös-Stone theorem; however this result was not best possible. I will describe a simpler proof (avoiding the Regularity Lemma) of a stronger result which is conjectured to be best possible.
Tue, 17 Nov 2009

14:30 - 15:30
L3

Higher Order Tournaments

Imre Leader
(Cambridge)
Abstract
Given $n$ points in general position in the plane, how many of the triangles formed by them can contain the origin? This problem was solved 25 years ago by Boros and Furedi, who used a beautiful translation of the problem to a non-geometric setting. The talk will start with background, including this result, and will then go on to consider what happens in higher dimensions in the geometric and non-geometric cases.
Tue, 10 Nov 2009

16:30 - 17:20
SR2

The Power of Choice in a Generalized Polya Urn Model

Gregory Sorkin
(IBM Research NY)
Abstract
HTML clipboard /*-->*/ /*-->*/ We introduce a "Polya choice" urn model combining elements of the well known "power of two choices" model and the "rich get richer" model. From a set of $k$ urns, randomly choose $c$ distinct urns with probability proportional to the product of a power $\gamma>0$ of their occupancies, and increment one with the smallest occupancy. The model has an interesting phase transition. If $\gamma \leq 1$, the urn occupancies are asymptotically equal with probability 1. For $\gamma>1$, this still occurs with positive probability, but there is also positive probability that some urns get only finitely many balls while others get infinitely many.
Tue, 10 Nov 2009

14:50 - 15:40
L3

Random graphs with few disjoint cycles

Colin McDiarmid
(Oxford)
Abstract
HTML clipboard /*-->*/ /*-->*/

Fix a positive integer $k$, and consider the class of all graphs which do not have $k+1$  vertex-disjoint cycles.  A classical result of Erdos and P\'{o}sa says that each such graph $G$ contains a blocker of size at most $f(k)$.  Here a {\em blocker} is a set $B$ of vertices such that $G-B$ has no cycles.

 

We give a minor extension of this result, and deduce that almost all such labelled graphs on vertex set $1,\ldots,n$ have a blocker of size $k$.  This yields an asymptotic counting formula for such graphs; and allows us to deduce further properties of a graph $R_n$ taken uniformly at random from the class: we see for example that the probability that $R_n$ is connected tends to a specified limit as $n \to \infty$.

 

There are corresponding results when we consider unlabelled graphs with few disjoint cycles. We consider also variants of the problem involving for example disjoint long cycles.

 

This is joint work with Valentas Kurauskas and Mihyun Kang.

Tue, 10 Nov 2009

14:00 - 14:50
L3

Oblivious Routing in the $L_p$ norm

Harald Raecke
(Warwick)
Abstract
HTML clipboard /*-->*/ /*-->*/

Gupta et al. introduced a very general multi-commodity flow problem in which the cost of a given flow solution on a graph $G=(V,E)$ is calculated by first computing the link loads via a load-function l, that describes the load of a link as a function of the flow traversing the link, and then aggregating the individual link loads into a single number via an aggregation function.

 

We show the existence of an oblivious routing scheme with competitive ratio $O(\log n)$ and a lower bound of $\Omega(\log n/\logl\og n)$ for this model when the aggregation function agg is an $L_p$-norm.

 

Our results can also be viewed as a generalization of the work on approximating metrics by a distribution over dominating tree metrics and the work on minimum congestion oblivious. We provide a convex combination of trees such that routing according to the tree distribution approximately minimizes the $L_p$-norm of the link loads. The embedding techniques of Bartal and Fakcharoenphol et al. [FRT03] can be viewed as solving this problem in the $L_1$-norm while the result on congestion minmizing oblivious routing solves it for $L_\infty$. We give a single proof that shows the existence of a good tree-based oblivious routing for any $L_p$-norm.

Tue, 03 Nov 2009

14:30 - 15:30
L3

A general class of self-dual percolation models

Oliver Riordan
(Oxford)
Abstract
One of the main aims in the theory of percolation is to find the `critical probability' above which long range connections emerge from random local connections with a given pattern and certain individual probabilities. The quintessential example is Kesten's result from 1980 that if the edges of the square lattice are selected independently with probability $p$, then long range connections appear if and only if $p>1/2$.  The starting point is a certain self-duality property, observed already in the early 60s; the difficulty is not in this observation, but in proving that self-duality does imply criticality in this setting.

Since Kesten's result, more complicated duality properties have been used to determine a variety of other critical probabilities. Recently, Scullard and Ziff have described a very general class of self-dual percolation models; we show that for the entire class (in fact, a larger class), self-duality does imply criticality.

Tue, 27 Oct 2009

14:30 - 15:30
L3

The simple harmonic urn

Stanislav Volkov
(Bristol)
Abstract

The simple harmonic urn is a discrete-time stochastic process on $\mathbb Z^2$ approximating the phase portrait of the harmonic oscillator using very basic transitional probabilities on the lattice, incidentally related to the Eulerian numbers.

This urn which we consider can be viewed as a two-colour generalized Polya urn with negative-positive reinforcements, and in a sense it can be viewed as a “marriage” between the Friedman urn and the OK Corral model, where we restart the process each time it hits the horizontal axes by switching the colours of the balls. We show the transience of the process using various couplings with birth and death processes and renewal processes. It turns out that the simple harmonic urn is just barely transient, as a minor modification of the model makes it recurrent.

We also show links between this model and oriented percolation, as well as some other interesting processes.

This is joint work with E. Crane, N. Georgiou, R. Waters and A. Wade.

Tue, 13 Oct 2009

14:30 - 15:30
L3

Prim's algorithm and self-organized criticality, in the complete graph

Louigi Addario-Berry
(McGill)
Abstract

Let $G=(V,E)$ be a graph with weights $\{w_e : e \in E\}$, and assume all weights are distinct. If $G$ is finite, then the well-known Prim's algorithm constructs its minimum spanning tree in the following manner. Starting from a single vertex $v$, add the smallest weight edge connecting $v$ to any other vertex. More generally, at each step add the smallest weight edge joining some vertex that has already been "explored" (connected by an edge) to some unexplored vertex.

If $G$ is infinite, however, Prim's algorithm does not necessarily construct a spanning tree (consider, for example, the case when the underlying graph is the two-dimensional lattice ${\mathbb Z}^2$, all weights on horizontal edges are strictly less than $1/2$ and all weights on vertical edges are strictly greater than $1/2$).

The behavior of Prim's algorithm for *random* edge weights is an interesting and challenging object of study, even
when the underlying graph is extremely simple. This line of research was initiated by McDiarmid, Johnson and Stone (1996), in the case when the underlying graph is the complete graph $K_n$. Recently Angel et. al. (2006) have studied Prim's algorithm on regular trees with uniform random edge weights. We study Prim's algorithm on $K_n$ and on its infinitary analogue Aldous' Poisson-weighted infinite tree. Along the way, we uncover two new descriptions of the Poisson IIC, the critical Poisson Galton-Watson tree conditioned to survive forever.

Joint work with Simon Griffiths and Ross Kang.

Tue, 16 Jun 2009

14:30 - 15:30
L3

A better algorithm for random k-SAT

Amin Coja-Oghlan
(Edinburgh)
Abstract
Let $F$ be a uniformly distributed random $k$-SAT formula with $n$ variables and $m$ clauses. We present a polynomial time algorithm that finds a satisfying assignment of $F$ with high probability for constraint densities $m/n
Tue, 02 Jun 2009

14:30 - 15:30
L3

Approximate groups

Ben Green
(Cambridge)
Abstract

Let $A$ be a finite set in some ambient group. We say that $A$ is a $K$-approximate group if $A$ is symmetric and if the set $A.A$ (the set of all $xy$, where $x$, $y$ lie in $A$) is covered by $K$ translates of $A$. I will illustrate this notion by example, and will go on to discuss progress on the "rough classification" of approximate groups in various settings: abelian groups, nilpotent groups and matrix groups of fixed dimension. Joint work with E. Breuillard.

Tue, 26 May 2009

14:30 - 15:30
L3

Hamilton cycles in random geometric graphs

Mark Walters
(QMUL)
Abstract

The Gilbert model of a random geometric graph is the following: place points at random in a (two-dimensional) square box and join two if they are within distance $r$ of each other. For any standard graph property (e.g.  connectedness) we can ask whether the graph is likely to have this property.  If the property is monotone we can view the model as a process where we place our points and then increase $r$ until the property appears.  In this talk we consider the property that the graph has a Hamilton cycle.  It is obvious that a necessary condition for the existence of a Hamilton cycle is that the graph be 2-connected. We prove that, for asymptotically almost all collections of points, this is a sufficient condition: that is, the smallest $r$ for which the graph has a Hamilton cycle is exactly the smallest $r$ for which the graph is 2-connected.  This work is joint work with Jozsef Balogh and B\'ela Bollob\'as

Tue, 19 May 2009

14:30 - 15:30
L3

Multicolour Ramsey numbers for cycles

Jozef Skokan
(LSE)
Abstract
For graphs $L_1,\dots,L_k$, the Ramsey number $R(L_1,\ldots,L_k)$ is the minimum integer $N$ such that for any edge-colouring of the complete graph $K_N$ by $k$ colours there exists a colour $i$ for which the corresponding colour class contains $L_i$ as a subgraph.

In this talk, we shall discuss recent developments in the case when the graphs $L_1,\dots,L_k$ are all cycles and $k\ge2$.

Tue, 10 Mar 2009

14:30 - 15:30
L3

Cycles in directed graphs

Peter Keevash
(QMUL)
Abstract

There are many theorems concerning cycles in graphs for which it is natural to seek analogous results for directed graphs. I will survey

recent progress on certain questions of this type. New results include

(i) a solution to a question of Thomassen on an analogue of Dirac’s theorem

for oriented graphs,

(ii) a theorem on packing cyclic triangles in tournaments that “almost” answers a question of Cuckler and Yuster, and

(iii) a bound for the smallest feedback arc set in a digraph with no short directed cycles, which is optimal up to a constant factor and extends a result of Chudnovsky, Seymour and Sullivan.

These are joint work respectively with (i) Kuhn and Osthus, (ii) Sudakov, and (iii) Fox and Sudakov.

Tue, 03 Mar 2009

14:30 - 15:30
L3

Concentration and mixing for Markov chains

Malwina Luczak
(LSE)
Abstract
We consider Markovian models on graphs with local dynamics. We show that, under suitable conditions, such Markov chains exhibit both rapid convergence to equilibrium and strong concentration of measure in the stationary distribution. We illustrate our results with applications to some known chains from computer science and statistical mechanics.

Tue, 24 Feb 2009

14:30 - 15:30
L3

Synchronization and homomorphisms

Peter Cameron
(QMUL)
Abstract

A graph homomorphism is a mapping of vertices which takes edges to edges. The endomorphisms of a graph (homomorphisms to itself) form a submonoid of he full transformation monoid on the vertex set. In the other direction, there is a construction of a graph from a transformation monoid, which will be described in the talk. Composing these maps gives closure operators on graphs and on monoids which have some interesting properties. There are also connections with finite automata and permutation groups.

Tue, 17 Feb 2009

14:30 - 15:30
L3

The edge correlation of random forests

Dudley Stark
(QMUL)
Abstract

The conjecture was made by Pemantle that a forest chosen uniformly at random from all forests in any finite graph G has the edge-negative association property. We use enumerative methods to show that this conjecture is true for n large enough when G is a complete graph on n vertices and derive related results for random trees.

Tue, 10 Feb 2009

14:30 - 15:30
L3

The scaling limit of critical random graphs

Christina Goldschmidt
(Oxford)
Abstract

Consider the Erdos-Renyi random graph $G(n,p)$ inside the critical window, so that $p = n^{-1} + \lambda n^{-4/3}$ for some real \lambda. In

this regime, the largest components are of size $n^{2/3}$ and have finite surpluses (where the surplus of a component is the number of edges more than a tree that it has). Using a bijective correspondence between graphs and certain "marked random walks", we are able to give a (surprisingly simple) metric space description of the scaling limit of the ordered sequence of components, where edges in the original graph are re-scaled by $n^{-1/3}$. A limit component, given its size and surplus, is obtained by taking a continuum random tree (which is not a Brownian continuum random tree, but one whose distribution has been exponentially tilted) and making certain natural vertex identifications, which correspond to the surplus edges. This gives a metric space in which distances are calculated using paths in the original tree and the "shortcuts" induced by the vertex identifications. The limit of the whole critical random graph is then a collection of such

metric spaces. The convergence holds in a sufficiently strong sense (an appropriate version of the Gromov-Hausdorff distance) that we are able to deduce the convergence in distribution of the diameter of $G(n,p)$, re-scaled by $n^{-1/3}$, to a non-degenerate random variable, for $p$ in the critical window.

This is joint work (in progress!) with Louigi Addario-Berry (Universite de Montreal) and Nicolas Broutin (INRIA Rocquencourt).

Tue, 03 Feb 2009

14:30 - 15:30
L3

The t-dependence and t-improper chromatic numbers of random graphs

Ross Kang
(McGill)
Abstract

We consider a natural generalisation of the independence and chromatic numbers and study their behaviour in Erdos-Renyi random graphs. The t-dependence number of a graph G is the size of the largest subset of the vertices of G whose induced subgraph has maximum degree at most t. The t-improper chromatic number of G is the smallest number of parts needed in a partition of the vertex set of G such that each part induces a subgraph of maximum degree at most t. Clearly, when t = 0, these parameters are, respectively, the independence and chromatic numbers of G. For dense random graphs, we determine the asymptotic ehaviour of these parameters over the range of choices for the growth of t as a function of the number of vertices.

This is joint work with Nikolaos Fountoulakis and Colin McDiarmid.

Tue, 27 Jan 2009

14:30 - 15:30
L3

Random partial orders and random linear extensions

Graham Brightwell
(LSE)
Abstract

Random partial orders and random linear extensions

Several interesting models of random partial orders can be described via a

process that builds the partial order one step at a time, at each point

adding a new maximal element. This process therefore generates a linear

extension of the partial order in tandem with the partial order itself. A

natural condition to demand of such processes is that, if we condition on

the occurrence of some finite partial order after a given number of steps,

then each linear extension of that partial order is equally likely. This

condition is called "order-invariance".

The class of order-invariant processes includes processes generating a

random infinite partial order, as well as those that amount to taking a

random linear extension of a fixed infinite poset.

Our goal is to study order-invariant processes in general. In this talk, I

shall explain some of the problems that need to be resolved, and discuss

some of the combinatorial problems that arise.

(joint work with Malwina Luczak)

Tue, 20 Jan 2009

14:30 - 15:30
L3

Vertex Turan problems in the hypercube

John Talbot
(UCL)
Abstract
Let $Q_n=\{0,1\}^n$ be the $n$-dimensional hypercube. For $1\leq d \leq n$ and $F\subseteq Q_d$ we consider the question of how large $S\subseteq Q _n$ can be if every embedding $i:Q_d\to Q_n$ satisfies $i(F)\not\subseteq S$. We determine the asymptotic behaviour of the largest $F$-free subsets of $Q_n$ for a variety of $F$, in particular we generalise the sole non-trivial prior result in this area: $F=Q_2$ due to E.A. Kostochka. Many natural questions remain open. This is joint work with Robert Johnson.
Tue, 09 Dec 2008

14:30 - 15:30
L3

Graphs on surfaces and virtual knots

Sergei Chmutov
(Ohio State)
Abstract
Regions of a link diagram can be colored in black and white in a checkerboard manner. Putting a vertex in each black region and connecting two vertices by an edge if the corresponding regions share a crossing yields a planar graph. In 1987 Thistlethwaite proved that the Jones polynomial of the link can be obtained by a specialization of the Tutte polynomial of this planar graph. The goal of my talk will be an explanation of a generalization of Thistlethwaite's theorem to virtual links. In this case graphs will be embedded into a (higher genus, possibly non-oriented) surface. For such graphs we used a generalization of the Tutte polynomial called the Bollobas-Riordan polynomial. For graphs on
surfaces the natural duality can be generalized to a duality with respect to a subset of edges. The generalized dual graph might be embedded into a different surface. I will explain a relation between the Bollobas-Riordan polynomials of dual graphs. This relation unifies various Thistlethwaite type theorems.