Cluster algebras are commutative algebras generated by a set S, obtained by an iterated mutation process of an initial seed. They were introduced by S. Fomin and A. Zelevinski in connection with canonical bases in Lie theory. Since then, many connections between cluster algebras and other areas have arisen.

This talk will focus on cluster algebras for which the set S is finite. These are called cluster algebras of finite type and are classified by Dynkin diagrams, in a similar way to many other objects.

# Past Kinderseminar

Stallings' folding technique lets us factor a map of graphs as a sequence of "folds" (edge identifications) followed by an immersion. We will show how this technique gives an algorithm to express a free-group automorphism as the product of Whitehead automorphisms (and hence Nielsen transformations), as well as proving finite generation for some subgroups of the automorphism group of a free group.

Given any family of varieties over a number field, if we have that the existence of local points everywhere is equivalent to the existence of a global point (for each member of the family), then we say that the family satisfies the Hasse principle. Of more interest, in this talk, is the case when the Hasse principle fails: we will give an overview of the "geography" of the currently known obstructions.