Past Numerical Analysis Group Internal Seminar

17 October 2017
14:30
Matteo Croci
Abstract

In this talk we describe a new approach that enables the use of elliptic PDEs with white noise forcing to sample Matérn fields within the multilevel Monte Carlo (MLMC) framework.

When MLMC is used to quantify the uncertainty in the solution of PDEs with random coefficients, two key ingredients are needed: 1) a sampling technique for the coefficients that satisfies the MLMC telescopic sum and 2) a numerical solver for the forward PDE problem.

When the dimensionality of the uncertainty in the problem is infinite (i.e. coefficients are random fields), the sampling techniques commonly used in the literature are Karhunen–Loève expansions or circulant embeddings. In the specific case in which the coefficients are Gaussian fields of Mat ́ern covariance structure another sampling technique available relies on the solution of a linear elliptic PDE with white noise forcing.


When the finite element method (FEM) is used for the forward problem, the latter option can become advantageous as elliptic PDEs can be quickly and efficiently solved with the FEM, the sampling can be performed in parallel and the same FEM software can be used without the need for external packages. However, it is unclear how to enforce a good stochastic coupling of white noise between MLMC levels so as to respect the MLMC telescopic sum. In this talk we show how this coupling can be enforced in theory and in practice.

  • Numerical Analysis Group Internal Seminar
17 October 2017
14:00
Abdul-Lateef Haji-Ali
Abstract

We propose and analyze a multilevel weighted least squares polynomial approximation method. Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that using an optimal distribution of sample locations, the number of samples required to achieve quasi-optimal approximation in a given polynomial subspace scales, up to a logarithmic factor, linearly in the dimension of this space. However, in many applications, the computation of samples includes a numerical discretization error. Thus, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose a multilevel method, which employs samples with different accuracies and is able to match the accuracy of single level approximations at reduced computational work. We prove complexity bounds under certain assumptions on polynomial approximability and sample work. Furthermore, we propose an adaptive
algorithm for situations where such assumptions cannot be verified a priori. Numerical experiments underline the practical applicability of our method.

  • Numerical Analysis Group Internal Seminar
10 October 2017
14:30
Jan Glaubitz
Abstract

In this talk, a novel discontinuous Galerkin (DG) method is introduced by utilising the principle of discrete least squares. The key idea is to build polynomial approximations by the method of  (weighted) discrete least squares instead of usual interpolation or (discrete) $L^2$ projections. The resulting method hence uses more information of the underlying function and provides a more robust alternative to common DG methods. As a result, we are able to construct high-order schemes which are conservative as well as linear stable on any set of collocation points. Several numerical tests highlight the new discontinuous Galerkin discrete least squares (DG-DLS) method to significantly outperform present-day DG methods.

  • Numerical Analysis Group Internal Seminar
10 October 2017
14:00
Hendrik Ranocha
Abstract

High-order methods for conservation laws can be highly efficient if their stability is ensured. A suitable means mimicking estimates of the continuous level is provided by summation-by-parts (SBP) operators and the weak enforcement of boundary conditions. Recently, there has been an increasing interest in generalised SBP operators both in the finite difference and the discontinuous Galerkin spectral element framework.

However, if generalised SBP operators are used, the treatment of boundaries becomes more difficult since some properties of the continuous level are no longer mimicked discretely —interpolating the product of two functions will in general result in a value different from the product of the interpolations. Thus, desired properties such as conservation and stability are more difficult to obtain.

In this talk, the concept of generalised SBP operators and their application to entropy stable semidiscretisations will be presented. Several recent ideas extending the range of possible methods are discussed, presenting both advantages and several shortcomings.

  • Numerical Analysis Group Internal Seminar
26 September 2017
14:00
Abstract

We consider a generalization of low-rank matrix completion to the case where the data belongs to an algebraic variety, i.e., each data point is a solution to a system of polynomial equations. In this case, the original matrix is possibly high-rank, but it becomes low-rank after mapping each column to a higher dimensional space of monomial features. Many well-studied extensions of linear models, including affine subspaces and their union, can be described by a variety model. We study the sampling requirements for matrix completion under a variety model with a focus on a union of subspaces. We also propose an efficient matrix completion algorithm that minimizes a surrogate of the rank of the matrix of monomial features, which is able to recover synthetically generated data up to the predicted sampling complexity bounds. The proposed algorithm also outperforms standard low-rank matrix completion and subspace clustering techniques in experiments with real data.

  • Numerical Analysis Group Internal Seminar
20 June 2017
14:00
Professor Wolfgang Hackbusch
Abstract

Starting from an example in quantum chemistry, we explain the techniques of Numerical Tensor Calculus with particular emphasis on the convolution operation. The tensorisation technique also applies to one-dimensional grid functions and allows to perform the convolution with a cost which may be much cheaper than the fast Fourier transform.

  • Numerical Analysis Group Internal Seminar
6 June 2017
14:00
Pranav Singh
Abstract


Magnus expansion based methods are an efficient class of integrators for solving Schrödinger equations that feature time dependent potentials such as lasers. These methods have been found to be highly effective in computational quantum chemistry since the pioneering work of Tal Ezer and Kosloff in the early 90s. The convergence of the Magnus expansion, however, is usually understood only for ODEs and traditional analysis suggests a much poorer performance of these methods than observed experimentally. It was not till the work of Hochbruck and Lubich in 2003 that a rigorous analysis justifying the application to PDEs with unbounded operators, such as the Schrödinger equation, was presented. In this talk we will extend this analysis to the semiclassical regime, where the highly oscillatory solution conventionally suggests large errors and a requirement for very small time steps.
 

  • Numerical Analysis Group Internal Seminar

Pages