Forthcoming events in this series


Tue, 05 Feb 2019
12:00
L4

Unitarity bounds on charged/neutral state mass ratio.

Dr Congkao Wen
(QMUL)
Abstract

I will talk about the implications of UV completion of quantum gravity on the low energy spectrums. I will introduce the constraints on low-energy effective theory due to unitarity and analyticity of scattering amplitudes, in particular an infinite set of new unitarity constraints on the forward-limit limit of four-point scattering amplitudes due to the work of Arkani-Hamed et al. In three dimensions, we find the constraints imply that light states with charge-to-mass ratio z greater than 1 can only be consistent if there exists other light states, preferably neutral. Applied to the 3D Standard Model like spectrum, where the low energy couplings are dominated by the electron with z \sim 10^22, this provides a novel understanding of the need for light neutrinos.

Tue, 22 Jan 2019
12:00
L4

The fishnet model: an integrable scalar CFT in four dimensions

Dr Omer Gurdogan
(Southampton)
Abstract

I will review the fishnet model, which is an integrable scalar QFT, obtained by an extreme gamma deformation of N=4 super Yang-Mills. The theory has a peculiar perturbative expansion in which many quantities at a fixed loop order are given by a single Feynman diagram. This feature allows the reinterpretation of Feynman loop integrals as integrable systems.

Mon, 03 Dec 2018
12:00
L6

Two-loop amplitudes from the Riemann Sphere

Dr Yvonne Geyer
(IAS Princeton)
Abstract


Massless Quantum Field Theories can be described perturbatively by chiral worldsheet models - the so-called Ambitwistor Strings. In contrast to conventional string theory, where loop amplitudes are calculated from higher genus Riemann surfaces, loop amplitudes in the ambitwistor string localise on the non-separating boundary of the moduli space. I will describe the resulting framework for QFT amplitudes from (nodal) Riemann spheres, building up from tree-level to two-loop amplitudes.
 

Tue, 30 Oct 2018
12:00
L4

Loop Quantum Gravity and the Continuum

Dr Wolfgang Wieland
(Perimeter Institute)
Abstract


One of the main open problems in loop quantum gravity is to reconcile the fundamental quantum discreteness of space with general relativity in the continuum. In this talk, I present recent progress regarding this issue: I will explain, in particular, how the discrete spectra of geometric observables that we find in loop gravity can be understood from a conventional Fock quantisation of gravitational edge modes on a null surface boundary. On a technical level, these boundary modes are found by considering a quasi-local Hamiltonian analysis, where general relativity is treated as a Hamiltonian system in domains with inner null boundaries. The presence of such null boundaries requires then additional boundary terms in the action. Using Ashtekar’s original SL(2,C) self-dual variables, I will explain that the natural such boundary term is nothing but a kinetic term for a spinor (defining the null flag of the boundary) and a spinor-valued two-form, which are both intrinsic to the boundary. The simplest observable on the boundary phase space is the cross sectional area two-form, which generates dilatations of the boundary spinors. In quantum theory, the corresponding area operator turns into the difference of two number operators. The area spectrum is discrete without ever introducing spin networks or triangulations of space. I will also comment on a similar construction in three euclidean spacetime dimensions, where the discreteness of length follows from the quantisation of gravitational edge modes on a one-dimensional cross section of the boundary.
The talk is based on my recent papers: arXiv:1804.08643 and arXiv:1706.00479.
 

Tue, 16 Oct 2018
12:00
L4

Surprising consequences of a positive cosmological constant

Dr Beatrice Bonga
(Perimeter Institute)
Abstract

The study of isolated systems has been vastly successful in the context of vanishing cosmological constant, Λ=0. However, there is no physically useful notion of asymptotics for the universe we inhabit with Λ>0.  The full non-linear framework is still under development, but some interesting results at the linearized level have been obtained. I will focus on the conceptual subtleties that arise at the linearized level and discuss the quadrupole formula for gravitational radiation as well as some recent developments.  

Tue, 09 Oct 2018

12:00 - 13:15
L4

The classical double copy: gravity from Yang-Mills

Chris White
(QMUL)
Abstract

Non-abelian gauge theories underly particle physics, including collision processes at particle accelerators. Recently, quantum scattering probabilities in gauge theories have been shown to be closely related to their counterparts in gravity theories, by the so-called double copy. This suggests a deep relationship between two very different areas of physics, and may lead to new insights into quantum gravity, as well as novel computational methods. This talk will review the double copy for amplitudes, before discussing how it may be extended to describe exact classical solutions such as black holes. Finally, I will discuss hints that the double copy may extend beyond perturbation theory. 

Tue, 26 Jun 2018

12:00 - 13:30
L4

Even a tiny cosmological constant casts a long shadow

Prof Abhay Ashtekar
(Penn State)
Abstract

Over 50 years ago, Bondi, Sachs, Newman, Penrose and others laid down foundations for the theory of gravitational waves in full non-linear general relativity. In particular, numerical simulations of binary mergers used in the recent discovery of gravitational waves are based on this theory. However, over the last 2-3 decades, observations have also revealed that the universe is accelerating in a manner consistent with the presence of a positive cosmological constant $\Lambda$. Surprisingly, it turns out that even the basic notions of the prevailing theory of gravitational waves --the Bondi news, the radiation field, the Bondi-Sachs 4-momentum-- do not easily generalize to this context, {\it no matter how small $\Lambda$ is.} Even in the weak field limit, it took a hundred years to find an appropriate generalization of Einstein's celebrated quadrupole formula to accommodate a positive cosmological constant. I will summarize the main issues and then sketch the current state of the art.
 

Tue, 12 Jun 2018

12:00 - 13:30
L3

Solitons on a wormhole

Dr Maciej Dunajski
(DAMTP University of Cambridge)
Tue, 15 May 2018

12:00 - 13:15
L4

Six-dimensional S-matrices from Rational Maps

Dr Congkao Wen
(Queen Mary College, London)
Abstract

In this talk, we will discuss some recent progress on the study of six-dimensional S-matrices as well as their applications. Six-dimensional theories we are interested include the world-volume theories of single probe M5-brane and D5-brane, as well as 6D super Yang-Mills and supergravity. We will present twistor-string-like formulas for all these theories, analogue to that of Witten’s twistor string formulation for 4D N=4 SYM. 
As the applications, from the 6D results we also deduce new formulas for scattering amplitudes of theories in lower dimensions, such as SYM and supergravity in five dimensions, and 4D N=4 SYM on the Columbo branch. 
 

Tue, 01 May 2018

12:00 - 13:15
L4

The double copy: from BRST ghosts to black hole solutions

Dr Sylvia Nagy
(Nottingham)
Abstract

I will present a procedure for perturbatively constructing the field content of gravitational theories from a convolutive product of two Yang-Mills theories. A dictionary "gravity=YM * YM" is developed, reproducing the symmetries and dynamics of the gravity theory from those of the YM theories. I will explain the unexpected, yet crucial role played by the BRST ghosts of the YM system in the construction of gravitational fields. The dictionary is expected to develop into a solution-generating technique for gravity.
 

Tue, 06 Mar 2018

12:00 - 13:15
L4

Improving Integrands & Integrals for Amplitudes

Dr Jake Bourjaily
(NBI Copenhagen)
Abstract

There have been enormous advances in both our ability to represent scattering amplitudes at the integrand-level (for an increasingly wide variety of quantum field theories), and also in our integration technology (and our understanding of the functions that result). In this talk, I review both sides of these recent developments. At the integrand-level, I describe the "prescriptive" refinement of generalized unitarity, and show how closed, integrand-level formulae can be given for all leading-weight contributions to any amplitude in any quantum field theory. Regarding integration, I describe some new results that could be summarized as "dual-conformal sufficiency": that all planar, ultraviolet-finite integrands can be regulated and computed directly in terms of manifestly dual-conformal integrals. I illustrate the power of having such representations, and discuss the role played by a (conjectural) cluster-algebraic structure for kinematic dependence. 

Fri, 02 Mar 2018

12:00 - 13:15
L3

Stability of Minkowski space and asymptotics of the metric

Peter Hintz
(UC Berkeley and CMI)
Abstract

I will explain a new proof of the non-linear stability of the Minkowski spacetime as a solution of the Einstein vacuum equation. The proof relies on an iteration scheme at each step of which one solves a linear wave-type equation globally. The analysis takes place on a suitable compactification of $\mathbb{R}^4$ to a manifold with corners whose boundary hypersurfaces correspond to spacelike, null, and timelike infinity; I will describe how the asymptotic behavior of the metric can be deduced from the structure of simple model operators at these boundaries. This talk is based on joint work with András Vasy.

Tue, 06 Feb 2018

12:00 - 13:15
L4

Quantum Gravity from Conformal Field Theory

James Drummond
(Southampton)
Abstract


I will describe how to recast perturbative quantum gravity using non-perturbative techniques from conformal field theory, focussing on the case of N=4 super Yang-Mills theory. By resolving the degeneracy among double trace operators at large N we are able to bootstrap one-loop supergravity corrections from the OPE of the CFT.
 

Tue, 23 Jan 2018

12:00 - 13:15
L4

T-duality from ambitwistor strings

Eduardo Casali
(Oxford)
Abstract

We study the winding mode sector of recently discovered string theories, which were, until now, believed to describe only conventional field theories in target space. We discover that upon compactification winding modes allows the string to acquire an oscillator spectrum giving rise to an infinite tower of massive higher-spin modes. We study the spectra, S-matrices, T-duality and high-energy behaviour of the bosonic and supersymmetric models. In the tensionless limit, we obtain formulae for amplitudes based on the scattering equations. The windings decouple from the scattering equations but remain in the integrands. The existence of this winding sector shows that these new theories do have stringy aspects and describe non-conventional field theories.  This talk is based on https://arxiv.org/abs/1710.01241.

Tue, 05 Dec 2017

12:00 - 13:15
L3

Azurite: A new algorithm for finding bases of loop integrals

Kasper Larsen
(Southampton University)
Abstract

Scattering amplitudes computed at a fixed loop order, along with any other object computed in perturbative QFT, can be expressed as a linear combination of a finite basis of loop integrals. To compute loop amplitudes in practise, such a basis of integrals must be determined. In this talk I introduce a new algorithm for finding bases of loop integrals and discuss its implementation in the publically available package Azurite.

Tue, 28 Nov 2017

12:00 - 13:15
L4

Amplitude relations in Einstein-Yang-Mills theory

Dhritiman Nandan
(Edinburgh University)
Abstract

I will discuss recent developments in the study of scattering amplitudes in Einstein-Yang-Mills theory. At tree level we find new structures at higher order collinear limits and novel connections with amplitudes in Yang-Mills theory using the CHY formalism. Finally I will comment on unitarity based observations regarding one-loop amplitudes in the theory. 

Tue, 14 Nov 2017

12:00 - 13:15
L4

Space-time conformal field theories from the Riemann sphere

Tim Adamo
(Imperial College)
Abstract

We consider two-dimensional chiral, first-order conformal field theories governing maps from the Riemann sphere to the projective light cone inside Minkowski space -- the natural setting for describing conformal field theories in two fewer dimensions. These theories have a SL(2) algebra of local bosonic constraints which can be supplemented by additional fermionic constraints depending on the matter content of the theory. By computing the BRST charge associated with gauge fixing these constraints, we find anomalies which vanish for specific target space dimensions. These critical dimensions coincide precisely with those for which (biadjoint) cubic scalar theory, gauge theory and gravity are classically conformally invariant. Furthermore, the BRST cohomology of each theory contains vertex operators for the full conformal multiplets of single field insertions in each of these space-time CFTs. We give a prescription for the computation of three-point functions, and compare our formalism with the scattering equations approach to on-shell amplitudes.

Tue, 31 Oct 2017

12:00 - 13:15
L4

Superradiance by charged black holes, a numerical exploration

Jean-Philippe Nicolas
(Université de Brest)
Abstract

Superradiance in black hole spacetimes is a phenomenon by which a field of spin 0 or 1 can extract energy from the background. Typically, one can imagine sending a wave packet with a given energy towards a black hole and receiving in return a superposition of wave packets carrying a total amount of energy that is larger than the energy sent in. It can be caused by rotation or by interaction between the charges of the black hole and the field. In the first case, the region where superradiance takes place (the ergoregion) has a clear geometrical localization depending only on the physical parameters of the black hole. For charge induced superradiance, this is not the case and we have a generalized ergoregion depending also on the physical properties of the field (mass, charge, angular momentum). In the most severe cases, the generalized ergoregion may cover the whole exterior of the black hole. We focus on charge-induced superradiance for spin 0 fields in spherically symmetric situations. Alain Bachelot wrote a thorough theoretical study of this question in 2004, which, to my knowledge, is the only work of its kind. When I was in Bordeaux, he and I discussed the possibility of investigating superradiance numerically. Over the years it became an actual research project, involving Laurent Di Menza and more recently Mathieu Pellen, of which this talk is an account. The idea was to observe numerically some superradiant behaviours and gain a more precise understanding of the phenomenon. We shall show an exact analogue of the Penrose process with the superradiance of wave packets and a slightly different behaviour for fields "emerging" inside the ergoregion. We shall also explore the related question of black hole bombs and present some recent observations. 

Tue, 10 Oct 2017

12:00 - 13:15
L4

Connecting the ambitwistor and the sectorized heterotic strings

Dr Thales Azevedo
(Uppsala University)
Abstract

Shortly after Mason & Skinner introduced the so-called ambitwistor strings, Berkovits came up with a pure-spinor analogue of the theory, which was later shown to provide the supersymmetric version of the Cachazo-He-Yuan amplitudes. In the heterotic version, however, both models give somewhat unsatisfactory descriptions of the supergravity sector.

In this talk, I will show how the original pure-spinor version of the heterotic ambitwistor string can be modified in a consistent manner that renders the supergravity sector treatable. In addition to the massless states, the spectrum of the new model --- which we call sectorized heterotic string --- contains a single massive level. In the limit in which a dimensionful parameter is taken to infinity, these massive states become the unexpected massless states (e.g. a 3-form potential) first encountered by Mason & Skinner."

Mon, 31 Jul 2017

12:00 - 13:15
L5

The Einstein-Maxwell Equations & Conformally Kaehler Geometry

Claude LeBrun
(Stonybrook)
Abstract


  Any constant-scalar-curvature Kaehler (cscK) metric on a complex surface may be viewed as a solution of the Einstein-Maxwell equations, and this allows one to produce solutions of these equations on any 4-manifold that arises as a compact complex surface with even first Betti number. However, not all solutions of the Einstein-Maxwell equations on such manifolds arise in this way. In this lecture, I will describe a construction of new compact examples that are Hermitian, but not Kaehler.
 

Tue, 30 May 2017

12:00 - 13:00
L4

Supertwistors: the massless, the massive, and the AdS

Paul Townsend
(DAMTP Cambridge)
Abstract

Some recent applications of supertwistors to superparticle mechanics will be reviewed.
First: Supertwistors allow a simple quantization of the  N-extended 4D massless superparticle, and peculiarities of massless 4D supermultiplets can then be explained by considering the quantum fate of a classical ``worldline CPT'' symmetry. For N=1 there is a global CPT anomaly, which explains why there is no CPT self-conjugate supermultiplet. For N=2 there is no anomaly but a Kramers degeneracy explains the doubling of states in the CPT self-conjugate hypermultiplet.
Second: the bi-supertwistor formulation of the N-extended massive superparticle in 3D, 4D and 6D makes manifest a ``hidden’’ 2N-extended supersymmetry. It also has a simple expression in terms of hermitian 2x2 matrices over the associative division algebras R,C,H.
Third: omission of the mass-shell constraint in this 3D,4D,6D bi-supertwistor action yields, as suggested  by holography, the action for a supergraviton in 4D,5D,7D AdS. Application to the near horizon AdSxS geometries of the M2,D3 and M5 brane confirms that the graviton supermultiplet has 128+128 polarisation states. 

Tue, 16 May 2017

12:00 - 13:00
L4

Emergent Locality and Causal States

Sebatian Fischetti
(Imperial College London)
Abstract

 Locality is not expected to be a fundamental aspect of a full theory of quantum gravity; it should be emergent in an appropriate semiclassical limit.  In the context of general holography, I'll define a new construct - the causal state - which provides a necessary and sufficient condition for a boundary state to have a holographic semiclassical dual causal geometry (and thus be "local").  This definition illuminates some general features of holographic quantum gravity: for instance, I'll show that the emergence of locality is "all or nothing" in the sense that it exhibits features of quantum error correction and quantum secret sharing.  In the special case of AdS/CFT, I'll also argue that the causal state is the natural boundary dual to the so-called causal wedge of a region.