I will survey of some of the many significant connections between integrable many-body physics and mathematics. I exploit an algebraic structure called a fusion category, familiar from the study of conformal field theory, topological quantum field theory and knot invariants. Rewriting statistical-mechanical models in terms of a fusion category allows the derivation of combinatorial identities for the Tutte polynomial, the analysis of discrete ``holomorphic'' observables in probability, and to defining topological defects in lattice models. I will give a little more detail on topological defects, explaining how they allows exact computations of conformal-field-theory quantities directly on the lattice, as well as a greatly generalised set of duality transformations.

# Past Relativity Seminar

I review work done in collaboration with Siegel and Zwiebach, in which a doubled geometry is developed that provides a spacetime action containing the standard gravity theory for graviton, Kalb-Ramond field and dilaton plus higher-derivative corrections. In this framework the T-duality O(d,d) invariance is manifest and exact to all orders in $\alpha'$. This theory by itself does not correspond to a standard string theory, but it does encode the Green-Schwarz deformation characteristic of heterotic string theory to first order in $\alpha'$ and a Riemann-cube correction to second order in $\alpha'$. I outline how this theory may be extended to include arbitrary string theories.

The CHY formulae are a set of remarkable formulae describing the scattering amplitudes of a variety of massless theories, as certain worldsheet integrals, localized on the solutions to certain polynomial equations (scattering equations). These formulae arise from a new class of holomorphic strings called Ambitwistor strings that encode exactly the dynamics of the supergravity (Yang-Mills) modes of string theory. Despite some recent progress by W. Siegel and collaborators, it remains as an open question as to what extent this theory was connected to the full string theory. The most mysterious point being certainly that the localization equations of the ambitwistor string also appear in the zero tension limit of string theory (alpha’ to infinity), which is the opposite limit than the supergravity one (alpha’ to zero). In this talk, I’ll report on some work in progress with E. Casali (Math. Inst. Oxford) and argue that the ambitwistor string is actually a tensionless string. Using some forgotten results on the quantization of these objects, we explain that the quantization of tensionless strings is ambiguous, and can lead either to a higher spin theory, or to the ambitwistor string, hence solving the previously mentioned paradox. In passing, we see that the degenerations of the tensile worldsheet that lead to tensionless strings make connection with Galilean Conformal Algebras and the (3d) BMS algebra.

Loop computations put the 'quantum' into quantum field theory. Much effort has focused on their structure and properties, with most spectacular progress in maximally supersymmetric gauge theories in the planar limit. These theories are however quite far from reality as described for instance in the standard model of particle physics. In this talk I'll report on ongoing work using BCFW on-shell recursion to obtain loop amplitude integrands in a much more realistic theory, pure Yang-Mills theory, using methods which apply directly to the standard model.

Black holes are one of the few available laboratories for testing theoretical ideas in fundamental physics. Since Hawking's result that they radiate a thermal spectrum, black holes have been regarded as thermodynamic objects with associated temperature, entropy, etc. While this is an extremely beautiful picture it has also lead to numerous puzzles. In this talk I will describe the two-loop correction to scalar correlation functions due to \phi^{^4} interactions and explain why this might have implications for our current view of semi-classical black holes.

I will summarize recent (arXiv:1603.05262) and upcoming work with Igor Buchberger and Oliver Schlotterer. We construct a map from n-point 1-loop string amplitudes in maximal supersymmetry to n-3-point 1-loop amplitudes in minimal supersymmetry. I will outline a few implications for the quantum string effective action.

In this talk, a concrete realization of the Bern-Carrasco-Johansson (BCJ) duality between color and kinematics in non-abelian gauge theories is presented. The method of Berends-Giele to package Feynman diagrams into currents is shown to yield classical solutions to the non-linear Yang-Mills equations. We describe a non-linear gauge transformation of these perturbiner solutions which reorganize the cubic-diagram content such that the kinematic dependence obeys the same Jacobi identities as the accompanying color factors. The resulting tree-level subdiagrams are assembled to kinematic numerators of tree-level and one-loop amplitudes which satisfy the BCJ duality.

In the last few years, it has become clear that there are striking connections between supersymmetry and geometric representation theory. In this talk, I will discuss boundary conditions in three dimensional gauge theories with N = 4 supersymmetry. I will then outline a physical understanding of a remarkable conjecture in representation theory known as `symplectic duality.

In this talk I will present some recent work on the amplituhedron formulation of scattering amplitudes. Very recently it has been conjectured that amplitudes in planar N=4 sYM are nothing else but the volume of a completely new mathematical object, called amplituhedron, which generalises the positive Grassmannian. After a review of the main ingredients which will be used, I will discuss some of the questions which remain open in this framework. I will then describe a new direction which promises to solve these issues and compute the volume of the amplituhedron at tree level.