Past Stochastic Analysis Seminar

23 January 2017
15:45
STEPHEN MUIRHEAD
Abstract

Gaussian fields are prevalent throughout mathematics and the sciences, for instance in physics (wave-functions of high energy electrons), astronomy (cosmic microwave background radiation) and probability theory (connections to SLE, random tilings etc). Despite this, the geometry of such fields, for instance the connectivity properties of level sets, is poorly understood. In this talk I will discuss methods of extracting geometric information about levels sets of a planar Gaussian field through discrete observations of the field. In particular, I will present recent work that studies three such discretisation schemes, each tailored to extract geometric information about the levels set to a different level of precision, along with some applications.

  • Stochastic Analysis Seminar
23 January 2017
14:15
FRANCOIS-XAVIER BRIOL
Abstract

 Monte Carlo methods are one of the main tools of modern statistics and applied mathematics. They are commonly used to approximate integrals, which allows statisticians to solve many tasks of interest such as making predictions or inferring parameter values of a given model. However, the recent surge in data available to scientists has led to an increase in the complexity of mathematical models, rendering them much more computationally expensive to evaluate. This has a particular bearing on Monte Carlo methods, which will tend to be much slower due to the high computational costs.

This talk will introduce a Monte Carlo integration scheme which makes use of properties of the integrand (e.g. smoothness or periodicity) in order to obtain fast convergence rates in the number of integrand evaluations. This will allow users to obtain much more precise estimates of integrals for a given number of model evaluations. Both theoretical properties of the methodology, including convergence rates, and practical issues, such as the tuning of parameters, will be discussed. Finally, the proposed algorithm will be illustrated on a Bayesian inverse problem for a PDE model of subsurface flow.

  • Stochastic Analysis Seminar

Pages