In the first part of this talk, we will give a very gentle introduction to the Ising model. Then , we will explain a very simple proof of a combinatorial formula for the 2D Ising model partition function using the language of Kac-Ward matrices. This approach can be used for general weighted graphs embedded in surfaces, and extends to the study of several other observables. This is a joint work with Dima Chelkak and Adrien Kassel.

# Past Topology Seminar

One way of understanding groups is by investigating their actions on special spaces, such as Hilbert and Banach spaces, non-positively curved spaces etc. Classical properties like Kazhdan property (T) and the Haagerup property are formulated in terms of such actions and turn out to be relevant in a wide range of areas, from the conjectures of Baum-Connes and Novikov to constructions of expanders. In this talk I shall overview various generalisations of property (T) and Haagerup to Banach spaces, especially in connection with classes of groups acting on non-positively curved spaces.

If you do not know quasicircles, you will understand what they are.

If you hate quasicircles, you will change your mind.

If you already love quasicircles, they will astonish you once more.

We give a classification of open Klein topological conformal field theories in terms of Calabi-Yau $A_\infty$-categories endowed with an involution. Given an open Klein topological conformal field theory, there is a universal open-closed extension whose closed part is the involutive version of the Hochschild chains associated to the open part.

p, li { white-space: pre-wrap; Let G be a locally compact Hausdorff topological group. Examples are Lie groups, p-adic groups, adelic groups, and discrete groups. The BC (Baum-Connes) conjecture proposes an answer to the problem of calculating the K-theory of the convolution C* algebra of G. Validity of the conjecture has implications in several different areas of mathematics --- e.g. Novikov conjecture, Gromov-Lawson-Rosenberg conjecture, Dirac exhaustion of the discrete series, Kadison-Kaplansky conjecture. An expander is a sequence of finite graphs which is efficiently connected. Any discrete group which contains an expander as a sub-graph of its Cayley graph is a counter-example to the BC conjecture with coefficients. Such discrete groups have been constructed by Gromov-Arjantseva-Delzant and by Damian Osajda. This talk will indicate how to make a correction in BC with coefficients. There are no known counter-examples to the corrected conjecture, and all previously known confirming examples remain confirming examples.

Representations of free loop groups possess an operation, akin to

tensor product, under which they form a braided tensor category. I

will discuss a similar operation, which is present on the category of

representations of the based loop groups, and which equips it with the

structure of a monoidal cateogory. Finally, I will present a recent

result, according to which the Drinfel'd centre of the category of

representations of a based loop group is equivalent to the category of

representations of the corresponding free loop group.

Erdos and Renyi introduced a model for studying random graphs of a given "density" and proved that there is a sharp threshold at which lower density random graphs are disconnected and higher density ones are connected. Motivated by ideas in geometric group theory we will explain some new threshold theorems we have discovered for random graphs. We will then, explain applications of these results to the geometry of Coxeter groups. Some of this talk will be on joint work with Hagen and Sisto; other parts are joint work with Hagen, Susse, and Falgas-Ravry.

The triangulation conjecture stated that any n-dimensional topological manifold is homeomorphic to a simplicial complex. It is true in dimensions at most 3, but false in dimension 4 by the work of Casson and Freedman. In this talk I will explain the proof that the conjecture is also false in higher dimensions. This result is based on previous work of Galewski-Stern and Matumoto, who reduced the problem to a question in low dimensions (the existence of elements of order 2 and Rokhlin invariant one in the 3-dimensional homology cobordism group). The low-dimensional question can be answered in the negative using a variant of Floer homology, Pin(2)-equivariant Seiberg-Witten Floer homology. At the end I will also discuss a related version of Heegaard Floer homology, which is more computable.

In this talk I will show how given a finitely generated relatively hyperbolic group G, one can construct a finite generating set X of G for which (G,X) has a number of metric properties, provided that the parabolic subgroups have these properties. I will discuss the applications of these properties to the growth series, language of geodesics, biautomatic structures and conjugacy problem. This is joint work with Yago Antolin.