Tue, 21 Oct 2025

14:00 - 15:00
L3

Optimal control of the Dyson equation and large deviations for Hermitian random matrices

Prof Panagiotis E. Souganidis
(University of Chicago)
Abstract

Using novel arguments as well as techniques developed over the last  twenty years to study mean field games, in this paper (i) we investigate the optimal control of the Dyson equation, which is the mean field equation for the so-called Dyson Brownian motion, that is, the stochastic particle system satisfied by the eigenvalues of large random matrices, (ii) we establish the well-posedness of the resulting infinite dimensional Hamilton-Jacobi equation, 
(iii) we provide a complete and direct proof for the large deviations for the spectrum of large random matrices, and (iv) we study the asymptotic behavior of the transition probabilities of the Dyson Brownian motion.  Joint work with Charles Bertucci and Pierre-Louis Lions.

Tue, 21 Oct 2025

14:00 - 15:00
L4

Algebraic relations for permutons

Omer Angel
(University of British Columbia)
Abstract

Permutons are a framework set up for understanding large permutations, and are instrumental in pattern densities. However, they miss most of the algebraic properties of permutations. I will discuss what can still be said in this direction, and some possible ways to move beyond permutons. Joint with Fiona Skerman and Peter Winkler.

Tue, 21 Oct 2025
14:00
L6

Profinite Rigidity, Noetherian Domains, and Solvable Groups

Julian Wykowski
(Cambridge)
Abstract

The question of profinite rigidity asks whether the isomorphism type of a group Γ can be recovered entirely from its finite quotients. In this talk, I will introduce the study of profinite rigidity in a different setting: the category of modules over a Noetherian domain Λ. I will explore properties of Λ-modules that can be detected in finite quotients and present two profinite rigidity theorems: one for free Λ-modules under a weak homological assumption on Λ, and another for all Λ-modules in the case when Λ is a Dedekind domain. Returning to groups, I will explain how these algebraic results yield new answers to profinite rigidity for certain classes of solvable groups. Time permitting, I will conclude with a sketch of future directions and ongoing collaborations that push these ideas further.

Tue, 21 Oct 2025
13:00
L2

Linking chaos and geometry

Zhenbin Yang
(Tsinghua University)
Abstract

In recent years, there has been increasing evidence for a geometric representation of quantum chaos within Einstein's theory of general relativity. Despite the lack of a complete theoretical framework, this overview will explore various examples of this phenomenon. It will also discuss the lessons we have learned from it to address several existing puzzles in quantum gravity, such as the black hole information paradox and off-shell wormhole geometries.

Tue, 21 Oct 2025
12:30
C3

Mathematical modelling of a mass-conserving electrolytic cell

Georgina Ryan, OCIAM
Abstract

The electrochemical processes in electrolytic cells are the basis for modern energy technology such as batteries. Electrolytic cells consist of an electrolyte (an salt dissolved in solution), two electrodes, and a battery. The Poisson–Nernst–Planck equations are the simplest mathematical model of steady state ionic transport in an electrolytic cell. We find the matched asymptotic solutions for the ionic concentrations and electric potential inside the electrolytic cell with mass conservation and known flux boundary conditions. The mass conservation condition necessitates solving for a higher order solution in the outer region. Our results provide insight into the behaviour of an electrochemical system with a known voltage and current, which are both experimentally measurable quantities.

Mon, 20 Oct 2025

16:30 - 17:30
L3

How to choose a model? A consequentialist approach

Prof. Thaleia Zariphopoulou
(University of Texas at Austin)
Abstract

Mathematical modelling and stochastic optimization are often based on the separation of two stages: At the first stage, a model is selected out of a family of plausible models and at the second stage, a policy is chosen that optimizes an underlying objective as if the chosen model were correct. In this talk, I will introduce a new approach which, rather than completely isolating the two stages, interlinks them dynamically. I will first introduce the notion of “consequential performance” of each  model and, in turn, propose a “consequentialist criterion for model selection” based on the expected utility of consequential performances. I will apply the approach to continuous-time portfolio selection and derive a key system of coupled PDEs and solve it for representative cases. I will, also, discuss the connection of the new approach with the popular methods of robust control and of unbiased estimators.   This is joint work with M. Strub (U. of Warwick)

Mon, 20 Oct 2025

16:30 - 17:30
L4

On non-isothermal flows of dilute incompressible polymeric fluids

Prof Josef Málek
(Faculty of Mathematics and Physics Charles University Prague)
Abstract

 In the first part of the talk, after revisiting some classical models for dilute polymeric fluids, we show that thermodynamically 
consistent models for non-isothermal flows of such fluids can be derived in a very elementary manner. Our approach is based on identifying the 
energy storage mechanisms and entropy production mechanisms in the fluid of interest, which in turn leads to explicit formulae for the Cauchy 
stress tensor and for all the fluxes involved. Having identified these mechanisms, we first derive the governing system of nonlinear partial 
differential equations coupling the unsteady incompressible temperature-dependent Navier–Stokes equations with a 
temperature-dependent generalization of the classical Fokker–Planck equation and an evolution equation for the internal energy. We then 
illustrate the potential use of the thermodynamic basis on a rudimentary stability analysis—specifically, the finite-amplitude (nonlinear) 
stability of a stationary spatially homogeneous state in a thermodynamically isolated system.

In the second part of the talk, we show that sequences of smooth solutions to the initial–boundary-value problem, which satisfy the 
underlying energy/entropy estimates (and their consequences in connection with the governing system of PDEs), converge to weak 
solutions that satisfy a renormalized entropy inequality. The talk is based on joint results with Miroslav Bulíček, Mark Dostalík, Vít Průša 
and Endré Süli.

Mon, 20 Oct 2025
16:00
C3

An application of Goursat’s Lemma to the irreducibility of Galois representations

Zachary Feng
(University of Oxford)
Abstract
Goursat’s Lemma is an elementary, but perhaps niche, result in group theory classifying subdirect products of the product of two groups. In this talk, I will review what this lemma says, and describe how it can be used to deduce the irreducibility of Galois representations.

 
Mon, 20 Oct 2025
15:30
L3

Identifying Bass martingales via gradient descent

Walter Schachermayer
(University of Vienna)
Abstract

Brenier’s theorem and its Benamou-Brenier variant play a pivotal role
in optimal transport theory. In the context of martingale transport
there is a perfect analogue, termed stretched Brownian motion. We
show that under a natural irreducibility condition this leads to the
notion of Bass martingales.
For given probability measures µ and ν on Rn in convex order, the
Bass martingale is induced by a probability measure α. It is the min-
imizer of a convex functional, called the Bass functional. This implies
that α can be found via gradient descent. We compare our approach
to the martingale Sinkhorn algorithm introduced in dimension one by
Conze and Henry-Labordere.

Mon, 20 Oct 2025
15:30
L5

Skein modules are holonomic 

David Jordan
(University of Edinburgh)
Abstract
Abstract:  Skein modules capture vector spaces of line operators in 3D Chern-Simons, equivalently line operators constrained to a 3-dimensional boundary in the Kapustin-Witten twist of 4D N=4 gauge theory.  They have an elementary mathemical definition via representation theory of quantum groups.
 
In recent work with Iordanis Romaidis we proved that when the quantum parameter is generic, the skein module of a 3-manifold is finitely generated relative to the skein algebra of its boundary and that moreover the resulting singular support variety is Lagrangian, hence that skein modules are holonomic. Our results confirm and strengthen a conjecture of Detcherry, and imply a conjecture of Frohman, Gelca and LoFaro from 2002 (the latter independently established this year by Beletti and Detcherry using other methods).
 
In the talk I will give an outline of the key ingredients of the proof, which recreate elements of the classical theory of differential operators in the skein setting. 

 
Mon, 20 Oct 2025
14:15
L4

Einstein constants and differential topology

Claude LeBrun
(Stony Brook University)
Abstract

A Riemannian metric is said to be  Einstein if it has constant Ricci curvature. In dimensions 2 or 3, this is actually equivalent to requiring the metric to have constant sectional curvature. However,  in dimensions 4 and higher, the Einstein condition becomes significantly weaker than constant sectional curvature, and this has rather dramatic consequences. In particular, it turns out that there are  high-dimensional smooth closed manifolds that admit pairs of Einstein metrics with Ricci curvatures of opposite signs. After explaining how one constructs such examples, I will then discuss some recent results exploring the coexistence of Einstein metrics with zero and positive Ricci curvatures.

Fri, 17 Oct 2025

14:00 - 15:00
L1

The Art of Maths Communication

Abstract

Join bestselling author Simon Singh and Oxford mathematician turned educator Junaid Mubeen for a session on maths communication! Learn how to present mathematics in a way that is both accessible and engaging, and how to apply these principles in a teaching context. Simon and Junaid will draw on their experiences in the Parallel Academy https://parallel.org.uk, an online initiative they set up in 2023, which has since grown to support thousands of keen and talented students to pursue maths beyond the curriculum. 

Fri, 17 Oct 2025
13:00
L6

Zero sets from the viewpoint of topological persistence

Vukašin Stojisavljević
(Oxford University)
Abstract

Studying the topology of zero sets of maps is a central topic in many areas of mathematics. Classical homological invariants, such as Betti numbers, are not always suitable for this purpose due to the fact that they do not distinguish between topological features of different sizes. Topological data analysis provides a way to study topology coarsely by ignoring small-scale features. This approach yields generalizations of a number of classical theorems, such as Bézout's theorem and Courant’s nodal domain theorem, to a wider class of maps. We will explain this circle of ideas and discuss potential directions for future research. The talk is partially based on joint works with L. Buhovsky, J. Payette, I. Polterovich, L. Polterovich and E. Shelukhin.

Fri, 17 Oct 2025

12:00 - 13:00
N4.01

Mathematrix Welcome Pizza Lunch

(Mathematrix)
Abstract

Join us for an initial welcome pizza lunch to start the academic year to learn about what's happening in Mathematrix in 2025/26! Meet other students who are from underrepresented groups in mathematics and allies :) 

Please RSVP here to confirm your spot: https://form.jotform.com/252814345456864

Fri, 17 Oct 2025
12:00
L3

Multi-Entropy Measures for Topologically Ordered Phases in (2+1) Dimensions

Shinsei Ryu
(Princeton)
Abstract

 

Entanglement entropy has long served as a key diagnostic of topological order in (2+1) dimensions. In particular, the topological entanglement entropy captures a universal quantity (the total quantum dimension) of the underlying topological order. However, this information alone does not uniquely determine which topological order is realized, indicating the need for more refined probes. In this talk, I will present a family of quantities formulated as multi-entropy measures, including examples such as reflected entropy and the modular commutator. Unlike the conventional bipartite setting of topological entanglement entropy, these multi-entropy measures are defined for tripartite partitions of the Hilbert space and capture genuinely multipartite entanglement. I will discuss how these measures encode additional universal data characterizing topologically ordered ground states.

Thu, 16 Oct 2025
17:00
L3

Integration in finite terms and exponentially algebraic functions

Jonathan Kirby
(University of East Anglia)
Abstract

The problem of integration in finite terms is the problem of finding exact closed forms for antiderivatives of functions, within a given class of functions. Liouville introduced his elementary functions (built from polynomials, exponentials, logarithms and trigonometric functions) and gave a solution to the problem for that class, nearly 200 years ago. The same problem was shown to be decidable and an algorithm given by Risch in 1969.

We introduce the class of exponentially-algebraic functions, generalising the elementary functions and much more robust than them, and give characterisations of them both in terms of o-minimal local definability and in terms of their types in a reduct of the theory of differentially closed fields.

We then prove the analogue of Liouville's theorem for these exponentially-algebraic functions and give some new decidability results.

This is joint work with Rémi Jaoui, Lyon

Thu, 16 Oct 2025
16:00
L5

The Relative Entropy of Expectation and Price

Paul McCloud
(nomura)
Abstract

Understanding the relationship between expectation and price is central to applications of mathematical finance, including algorithmic trading, derivative pricing and hedging, and the modelling of margin and capital. In this presentation, the link is established via dynamic entropic risk optimisation, which is promoted for its convenient integration into standard pricing methodologies and for its ability to quantify and analyse model risk. As an example of the versatility of entropic pricing, discrete models with classical and quantum information are compared, with studies that demonstrate the effectiveness of quantum decorrelation for model fitting.

Thu, 16 Oct 2025
15:00
L6

Operator algebras meet (generalized) global symmetries

Andrea Antinucci
Abstract

Two different, almost orthogonal approaches to QFT are: (1) the study of von Neumann algebras of local observables in flat space, and (2) the study of extended and topological defects in general spacetime manifolds. While naively the two focus on different aspects, it has been recently pointed out that some of the axioms of approach (1) clash with certain expectations from approach (2). In this JC talk, I’ll give a brief introduction to both approaches and review the recent discussion in [2008.11748], [2503.20863], and [2509.03589], explaining (i) what the tensions are, (ii) a recent proposal to solve them, and (iii) why it can be useful.

Thu, 16 Oct 2025

14:00 - 15:00
Lecture Room 3

Piecewise rational finite element spaces of differential forms

Evan Gawlik
(Santa Clara University)
Abstract

The Whitney forms on a simplicial triangulation are piecewise affine differential forms that are dual to integration over chains.  The so-called blow-up Whitney forms are piecewise rational generalizations of the Whitney forms.  These differential forms, which are also called shadow forms, were first introduced by Brasselet, Goresky, and MacPherson in the 1990s.  The blow-up Whitney forms exhibit singular behavior on the boundary of the simplex, and they appear to be well-suited for constructing certain novel finite element spaces, like tangentially- and normally-continuous vector fields on triangulated surfaces.  This talk will discuss the blow-up Whitney forms, their properties, and their applicability to PDEs like the Bochner Laplace problem.  

Thu, 16 Oct 2025

12:00 - 13:00
L3

Think Global, Act Local: A Mathematician's Guide to Inducing Localised Patterns

Dan J. Hill
(University of Oxford)
Further Information

Dan is a recently appointed Hooke Fellow within OCIAM. His research focus is on pattern formation and the emergence of localised states in PDE models, with an emphasis on using polar coordinate systems to understand nonlinear behaviour in higher spatial dimensions. He received his MMath and PhD from the University of Surrey, with a thesis on the existence of localised spikes on the surface of a ferrofluid, and previously held postdoctoral positions at Saarland University, including an Alexander von Humboldt Postdoctoral Fellowship. www.danjhill.com

Abstract
The existence of localised two-dimensional patterns has been observed and studied in numerous experiments and simulations: ranging from optical solitons, to patches of desert vegetation, to fluid convection. And yet, our mathematical understanding of these emerging structures remains extremely limited beyond one-dimensional examples.
 
In this talk I will discuss how adding a compact region of spatial heterogeneity to a PDE model can not only induce the emergence of fully localised 2D patterns, but also allows us to rigorously prove and characterise their bifurcation. The idea is inspired by experimental and numerical studies of magnetic fluids and tornados, where our compact heterogeneity corresponds to a local spike in the magnetic field and temperature gradient, respectively. In particular, we obtain local bifurcation results for fully localised patterns both with and without radial or dihedral symmetry, and rigorously continue these solutions to large amplitude. Notably, the initial bifurcating solution (which can be stable at bifurcation) varies between a radially-symmetric spot and a 'dipole' solution as the width of the spatial heterogeneity increases. 
 
This work is in collaboration with David J.B. Lloyd and Matthew R. Turner (both University of Surrey).
 
 
Thu, 16 Oct 2025

12:00 - 12:30
Lecture Room 4

A C0-hybrid interior penalty method for the nematic Helmholtz-Korteweg equation

Tim van Beeck
(University of Göttingen)
Abstract

The nematic Helmholtz-Korteweg equation is a fourth-order scalar PDE modelling time-harmonic acoustic waves in nematic Korteweg fluids, such as nematic liquid crystals. Conforming discretizations typically require C1-conforming elements, for example the Argyris element, whose implementation is notoriously challenging - especially in three dimensions - and often demands a high polynomial degree. 
In this talk, we consider an alternative non-conforming C0-hybrid interior penalty method that is both stable and convergent for any polynomial degree greater than two. Classical C0-interior penalty methods employ an H1-conforming subspace and treat the non-conformity with respect to H2 with discontinuous Galerkin techniques. Building on this idea, we use hybridization techniques to improve the computational efficiency of the discretization. We provide a brief overview of the numerical analysis and show numerical examples, demonstrating the method's ability to capture anisotropic propagation of sound in two and three dimensions. 

Wed, 15 Oct 2025
16:00
L4

Pointwise bounds for 3-torsion (note: Wednesday)

Stephanie Chan
(UCL)
Abstract

For $\ell$ an odd prime number and $d$ a squarefree integer, a notable problem in arithmetic statistics is to give pointwise bounds for the size of the $\ell$-torsion of the class group of $\mathbb{Q}(\sqrt{d})$. This is in general a difficult problem, and unconditional pointwise bounds are only available for $\ell = 3$ due to work of Pierce, Helfgott—Venkatesh and Ellenberg—Venkatesh. The current record due to Ellenberg—Venkatesh is $h_3(d) \ll_\epsilon d^{1/3 + \epsilon}$. We will discuss how to improve this to $h_3(d) \ll d^{0.32}$. This is joint work with Peter Koymans.

Wed, 15 Oct 2025
15:00
L5

The Polynomial Conjecture for Monomial Representations of Exponential Lie Groups

Ali Baklouti
(University of SFAX Tunisia)
Abstract

Let \( G = \exp(\mathfrak{g}) \) be a connected, simply connected nilpotent Lie group with Lie algebra \( \mathfrak{g} \), and let \( H = \exp(\mathfrak{h}) \) be a closed subgroup with Lie algebra \( \mathfrak{h} \). Consider a unitary character \( \chi \) of \( H \), given by \(\chi(\exp X) = \chi_{f}(\exp X) = e^{i f(X)}, \  X \in \mathfrak{h}, \) for some \( f \in \mathfrak{g}^{\ast} \). Let \( \tau = \operatorname{Ind}_{H}^{G} \chi \) denote the monomial representation of \( G \) induced from \( \chi \).

The object of interest is the algebra \( D_{\tau}(G/H) \) of \( G \)-invariant differential operators acting on the homogeneous line bundle associated with the data \( (G, H, \chi) \). Under the assumption that \( \tau \) has finite multiplicities, it is known that \( D_{\tau}(G/H) \) is commutative.

In this talk, I will discuss the Polynomial Conjecture for the representation \( \tau \), which asserts that the algebra \( D_{\tau}(G/H) \) is isomorphic to  
\(\mathbb{C}[\Gamma_{\tau}]^{H}\),  the algebra of \( H \)-invariant polynomial functions on \( \Gamma_{\tau} \). Here, \( \Gamma_{\tau} = f + \mathfrak{h}^{\perp} \) denotes the affine subspace of \( \mathfrak{g}^{\ast} \).

I will present recent advances toward proving this conjecture, with a particular emphasis on Duflo's Polynomial Conjecture concerning the Poisson center of \( \Gamma_{\tau} \). Furthermore, I will discuss the case where \( \tau \) has discrete-type multiplicities in the exponential setting, shedding light on a counterexample to Duflo's conjecture.
 

Tue, 14 Oct 2025
16:00
C3

Homotopy groups of Cuntz classes in C*-algebras

Andrew Toms
(Leverhulme Visiting Professor, University of Oxford)
Abstract

The Cuntz semigroup of a C*-algebra A consists of equivalence classes of positive elements, where equivalence means roughly that two positive elements have the same rank relative to A.  It can be thought of as a generalization of the Murray von Neumann semigroup to positive elements and is an incredibly sensitive invariant. We present a calculation of the homotopy groups of these Cuntz classes as topological subspaces of A when A is classifiable in the sense of Elliott.  Remarkably, outside the case of compact classes, these spaces turn out to be contractible.  

Tue, 14 Oct 2025
15:30
L4

Vafa-Witten invariants from modular anomaly

Sergey Alexandrov
(Montpelier)
Abstract
I'll present a modular anomaly equation satisfied by generating functions of refined Vafa-Witten invariants 
for the gauge group $U(N)$ on complex surfaces with $b_1=0$ and $b_2^+=1$, 
which has been derived from S-duality of string theory.
I'll show how this equation can used to find explicit expressions for these generating functions
(and their modular completions) on $\mathbb{CP}^2$, Hirzebruch and del Pezzo surfaces.
The construction for $\mathbb{CP}^2$ suggests also a new form of blow-up identities.
Tue, 14 Oct 2025

14:00 - 15:00
L4

An exponential upper bound on induced Ramsey numbers

Marcelo Campos
(Instituto Nacional de Matemática Pura e Aplicada (IMPA))
Abstract
The induced Ramsey number $R_{ind}(H)$ of a graph $H$ is the minimum number $N$ such that there exists a graph with $N$ vertices for which all red/blue colorings of its edges contain a monochromatic induced copy of $H$. In this talk I'll show there exists an absolute constant $C > 0$ such that, for every graph $H$ on $k$ vertices, these numbers satisfy $R_{ind}(H) ≤ 2^{Ck}$. This resolves a conjecture of Erdős from 1975.
 
This is joint work with Lucas Aragão, Gabriel Dahia, Rafael Filipe and João Marciano.
Tue, 14 Oct 2025
14:00
L6

The Laplace Transform on Lie Groups: A Representation-Theoretical Perspective

Ali Baklouti
(University of SFAX Tunisia)
Abstract

In this talk, I will present a representation-theoretical approach to constructing a non-commutative analogue of the classical Laplace transform on Lie groups. I will begin by discussing the motivations for such a generalization, emphasizing its connections with harmonic analysis, probability theory, and the study of evolution equations on non-commutative spaces. I will also outline some of the key challenges that arise when extending the Laplace transform to the setting of Lie groups, including the non-commutativity of the group operation and the complexity of its dual space.

The main part of the talk will focus on an explicit construction of the Laplace transform in the framework of connected, simply connected nilpotent Lie groups. This construction relies on Kirillov’s orbit method, which provides a powerful bridge between the geometry of coadjoint orbits and the representation theory of nilpotent groups.

As an application, I will describe an operator-theoretic analogue of the classical Müntz–Szász theorem, establishing a density result for a family of generalized polynomials in associated with the group setting. This result highlights the strength of the representation-theoretical approach and its potential for solving classical approximation problems in a non-commutative context.

Tue, 14 Oct 2025
13:00
L2

SymTFTs for continuous spacetime symmetries

Nicola Dondi
(ICTP)
Abstract

Symmetry Topological Field Theories (SymTFTs) are topological field theories that encode the symmetry structure of global symmetries in terms of a theory in one higher dimension. While SymTFTs for internal (global) symmetries have been highly successful in characterizing symmetry aspects in the last few years, a corresponding framework for spacetime symmetries remains unexplored. We propose an extension of the SymTFT framework to include spacetime symmetries. In particular, we propose a SymTFT for the conformal symmetry in various spacetime dimensions. We demonstrate that certain BF-type theories, closely related to topological gravity theories, possess the correct topological operator content and boundary conditions to realize the conformal algebra of conformal field theories living on boundaries. As an application, we show how effective theories with spontaneously broken conformal symmetry can be derived from the SymTFT, and we elucidate how conformal anomalies can be reproduced in the presence of even-dimensional boundaries.
 

Mon, 13 Oct 2025
16:45
L5

Varieties over free associative algebras

Zlil Sela
Abstract
In the 1960s and 1970s ring theorists (P. M. Cohn, G.Bergman and others) tried to study the structure of sets of solutions to systems of (polynomial) equations (varieties) over free associative algebras. They found significant pathologies that demonstrated the difficulty to achieve their goal.
 
In an ongoing joint work with A. Atkarskaya we modify techniques that were used to study varieties over free groups and semigroups to study the structure of varieties over associative algebras. Along the way we find new structures also in free groups and semigroups. 
Mon, 13 Oct 2025

16:30 - 17:30
L4

Local L^\infty estimates for optimal transport problems

Prof Lukas Koch 
(School of Mathematical and Physical Sciences University of Sussex)
Abstract

I will explain how to obtain local L^\infty estimates for optimal transport problems. Considering entropic optimal transport and optimal transport with p-cost, I will show how such estimates, in combination with a geometric linearisation argument, can be used in order to obtain ε-regularity statements. This is based on recent work in collaboration with M. Goldman (École Polytechnique) and R. Gvalani (ETH Zurich).

Mon, 13 Oct 2025
16:00
C3

Eigenvalues of non-backtracking matrices

Cedric Pilatte
(Mathematical Insitute, Oxford)
Abstract
Understanding the eigenvalues of the adjacency matrix of a (possibly weighted) graph is a problem arising in various fields of mathematics. Since a direct computation of the spectrum is often too difficult, a common strategy is to instead study the trace of a high power of the matrix, which corresponds to a high moment of the eigenvalues. The utility of this method comes from its combinatorial interpretation: the trace counts the weighted, closed walks of a given length within the graph.
 
However, a common obstacle arises when these walk-counts are dominated by trivial "backtracking" walks—walks that travel along an edge and immediately return. Such paths can mask the more meaningful structural properties of the graph, yielding only trivial bounds.
 
This talk will introduce a powerful tool for resolving this issue: the non-backtracking matrix. We will explore the fundamental relationship between its spectrum and that of the original matrix. This technique has been successfully applied in computer science and random graph theory, and it is a key ingredient in upcoming work on the 2-point logarithmic Chowla conjecture.
Mon, 13 Oct 2025
15:30
L5

Virtual fibring and Poincaré duality

Dawid Kielak
(Mathematical Institute Oxford)
Abstract

I will talk about the problem of recognising when a manifold admits a finite cover that fibres over the circle, with emphasis on the case of hyperbolic manifolds in odd dimensions. I will survey the state-of-art, and discuss the role that group theory plays in the problem. Finally, I will discuss a recent result that sheds light on the analogous group-theoretic problem, that is, virtual algebraic fibring of Poincaré-duality groups. The final theorem is joint with Sam Fisher and Giovanni Italiano.

Mon, 13 Oct 2025
14:15
L4

Non-maximal Toledo components

Oscar Garcia-Prada
(Instituto de Ciencias Matemáticas (ICMAT))
Abstract

The well-known Milnor-Wood inequality gives a bound on the Toledo invariant of a representation of the fundamental group of a compact surface in a non-compact Lie group of Hermitian type. While a lot is known regarding the counting of maximal Toledo components, and their role in higher Teichmueller theory, the non-maximal case remains elusive. In this talk, I will present a strategy to count the number of such non-maximal Toledo connected components. This is joint work in progress with Brian Collier and Jochen Heinloth, building on previous work with Olivier Biquard, Brian Collier and Domingo Toledo.

Thu, 09 Oct 2025

14:00 - 15:00
(This talk is hosted by Rutherford Appleton Laboratory)

HSS iteration for solving the indefinite Helmholtz equation by multigrid with standard components

Colin Cotter
(Imperial College, London)
Abstract

We provide an iterative solution approach for the indefinite Helmholtz equation discretised using finite elements, based upon a Hermitian Skew-Hermitian Splitting (HSS) iteration applied to the shifted operator, and prove that the iteration is k- and mesh-robust when O(k) HSS iterations are performed. The HSS iterations involve solving a shifted operator that is suitable for approximation by multigrid using standard smoothers and transfer operators, and hence we can use O(N) parallel processors in a high performance computing implementation, where N is the total number of degrees of freedom. We argue that the algorithm converges in O(k) wallclock time when within the range of scalability of the multigrid. We provide numerical results verifying our proofs and demonstrating this claim, establishing a method that can make use of large scale high performance computing systems.

 

 

This talk is hosted by Rutherford Appleton Laboratory and will take place @ Harwell Campus, Didcot, OX11 0QX

Tue, 30 Sep 2025
15:00
C3

Spacetime reconstruction and measured Lorentz-Gromov-Hausdorff convergence

Mathias Braun
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

We present Gromov's celebrated reconstruction theorem in Lorentzian geometry and show two applications. First, we introduce several notions of convergence of (isomorphism classes of) normalized bounded Lorentzian metric measure spaces, for which we describe several fundamental properties. Second, we state a version within the spacetime reconstruction problem from quantum gravity. Partly in collaboration with Clemens Sämann (University of Vienna).

Tue, 30 Sep 2025

15:00 - 16:00
L6

Dimension liftings for quantum computation of partial differential equations and related problems

Prof Shi Jin
(Shanghai Jiao Tong University)
Abstract

Quantum computers are designed based on quantum mechanics principle, they are most suitable to solve the Schrodinger equation, and linear PDEs (and ODEs) evolved by unitary operators.  It is important to  to explore whether other problems in scientific computing, such as ODEs, PDEs, and  linear algebra that arise in both classical and quantum systems which are not unitary evolution,  can be handled by quantum computers.  

We will present a systematic way to develop quantum simulation algorithms for general differential equations. Our basic framework is dimension lifting, that transfers non-autonomous ODEs/PDEs systems to autonomous ones, nonlinear PDEs to linear ones, and linear ones to Schrodinger type PDEs—coined “Schrodingerization”—with uniform evolutions. Our formulation allows both qubit and qumode (continuous-variable) formulations, and their hybridizations, and provides the foundation for analog quantum computing which are easier to realize in the near term. We will also discuss  dimension lifting techniques for quantum simulation of stochastic DEs and PDEs with fractional derivatives. 

Tue, 30 Sep 2025
13:00
L6

Path integrals and state sums for general defect TQFTs

Kevin Walker
(Q)
Abstract

For homogeneous, defect-free TQFTs, (1) n+\epsilon-dimensional versions of the theories are relatively easy to construct; (2) an n+\epsilon-dimensional theory can be extended to n+1-dimensional (i.e. the top-dimensional path integral can be defined) if certain more restrictive conditions related to handle cancellation are satisfied; and (3) applying this path integral construction to a handle decomposition of an n+1-manifold yields a state sum description of the path integral.  In this talk, I'll show that the same pattern holds for defect TQFTs.  The adaptation of homogeneous results to the defect setting is mostly straightforward, with the only slight difficulty being the purely topological problem of generalizing handle theory to manifolds with defects.  If time allows, I'll describe two applications: a Verlinde-like dimension formula for the dimension of the ground state of fracton systems, and a generalization, to arbitrary dimension, of Ostrik's theorem relating algebra objects to modules (gapped boundaries).

Mon, 29 Sep 2025

14:00 - 15:00
Lecture Room 5

Advances in Multiscale Analysis and Applications

Wael Mattar
(Tel Aviv University)
Abstract

Multiscale analysis has become a cornerstone of modern signal and image processing. Driven by the objective of representing data in a hierarchical fashion, capturing coarse-to-fine structures and revealing features across scales, multiscale transforms enable powerful techniques for a wide range of applications. In this talk, we will begin with a comprehensive overview of the construction of multiscale transforms via refinement operators, highlighting recent advances in the area. These operators serve as upsampling in the process of multiscaling. Once established, we will describe the adaptation of multiscale transforms to manifolds, and then focus on their extension to Wasserstein spaces. The talk will highlight both theoretical developments and practical implementations, illustrating the potential of multiscale methods in emerging data-driven applications. Lastly, we will explore how classical multiscaling tools such as wavelet transforms can be utilized for autoregressive image generation via large language models. We will show experimental results that indicate promising performance.

 

Wael Mattar

Thu, 25 Sep 2025
17:00
Lecture Theatre 1, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG

Going for Gold: the Mathematics of Sporting Glory - Amandine Aftalion

Amandine Aftalion
Further Information

What is the best way to run to win a race? Why does a sprinter slow down before the finish line? Why do you swim better slightly underwater? Why, on a bike, the faster you go, the more stable you are?

Amandine Aftalion is a mathematician and a senior scientist at the French National Centre for Scientific Research (CNRS). She specialises in modelling based on low temperature physics alongside writing on a range of sports culminating in her book 'Be a Champion, 40 facts you didn't know about sports and science'.

Please email @email to register to attend in person.

The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Thursday 16 October at 5-6pm and any time after (no need to register for the online version).

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

banner for event featuring runner on track
Thu, 25 Sep 2025
11:00
C6

Free information geometry and the large-n limit of random matrices

David Jekel
(University of Copenhagen)
Abstract

I will describe recent developments in information geometry (the study of optimal transport and entropy) for the setting of free probability.  One of the main goals of free probability is to model the large-n behavior of several $n \times n$ matrices $(X_1^{(n)},\dots,X_m^{(n)})$ chosen according to a sufficiently nice joint distribution that has a similar formula for each n (for instance, a density of the form constant times $e^{-n^2 \tr_n(p(x))}$ where $p$ is a non-commutative polynomial).  The limiting object is a tuple $(X_1,\dots,X_m)$ of operators from a von Neumann algebra.  We want the entropy and the optimal transportation distance of the probability distributions on $n \times n$ matrix tuples converge in some sense to their free probabilistic analogs, and so to obtain a theory of Wasserstein information geometry for the free setting.  I will present both negative results showing unavoidable difficulties in the free setting, and positive results showing that nonetheless several crucial aspects of information geometry do adapt.

Wed, 17 Sep 2025
11:15
L3

The KdV equation: exponential asymptotics, complex singularities and Painlevé II

Scott W. McCue
(School of Mathematical Sciences Queensland University of Technology Brisbane)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Further Information

Scott W. McCue is Professor of Applied Mathematics at Queensland University of Technology. His research spans interfacial dynamics, water waves, fluid mechanics, mathematical biology, and moving boundary problems. He is widely recognised for his contributions to modelling complex free-boundary phenomena, including thin-film rupture, Hele–Shaw flows, and biological invasion processes.

Abstract

We apply techniques of exponential asymptotics to the KdV equation to derive the small-time behaviour for dispersive waves that propagate in one direction.  The results demonstrate how the amplitude, wavelength and speed of these waves depend on the strength and location of complex-plane singularities of the initial condition.  Using matched asymptotic expansions, we show how the small-time dynamics of complex singularities of the time-dependent solution are dictated by a Painlevé II problem with decreasing tritronquée solutions.  We relate these dynamics to the solution on the real line.

 

 

Wed, 10 Sep 2025 15:00 -
Fri, 12 Sep 2025 13:00
C6

Mini Course: Topological Phenomena in the Cuntz semigroup

Andrew Toms
(Purdue University; Leverhume Visiting Professor, University of Oxford)
Abstract

Mini Course: Topological Phenomena in the Cuntz semigroup 

Mathematical Institute, University of Oxford

10-12 Sept 2025

This short mini course aims to introduce participants to the interplay between algebraic and differential topology and the  Cuntz semigroup of C*-algebras. It will describe the use of the Cuntz semigroup to build C*-algebras outside the scope of the Elliott classification programme.  There will be opportunities for participants to offer contributed talks.

Main Lecturer: Andrew Toms, Professor of Mathematics, Purdue University; Leverhume Visiting Professor, University of Oxford
For more details and registration, visit the website
Tue, 09 Sep 2025
16:00
L5

Continua of Steadily Rotating Stars

Prof. Walter Strauss
(Brown University)
Abstract
I will present a survey of some recent mathematical work on rotating stars that is joint with Yilun Wu.   The rotating star is modeled as a compressible fluid subject only to gravity. Under certain conditions there exists a large family of solutions on which the supports of the stars become unbounded. The stars have a fixed mass and they rotate around a fixed axis at a speed that varies along the family.  I will also mention a more elaborate model, joint with Yilun Wu and Juhi Jang, that permits the entropy to be variable.


 

Tue, 09 Sep 2025

15:00 - 16:00
L5

 Global-in-Time Well-Posedness of Classical Solutions to the Vacuum Free Boundary Problem for the Viscous Saint-Venant System with Large Data

Professor Shengguo Zhu
(Shanghai Jiao Tong University China)
Abstract

We talk about the global-in-time well-posedness of classical solutions to the vacuum free boundary problem of the 1D viscous Saint-Venant system for laminar shallow water with large data. Since the depth of the fluid vanishes on the moving boundary, the momentum equations become degenerate both in the time evolution and spatial dissipation, which may lead to singularities for the derivatives of the velocity of the fluid and then makes it challenging to study classical solutions. By exploiting the intrinsic degenerate-singular structures of the viscous Saint-Venant system, we are able to identify two classes of admissible initial depth profile and obtain the global well-posedness theory here: the first class of the initial depth profile satisfies the well-known BD entropy condition; the second class of the initial depth profile satisfies the well-known physical vacuum boundary condition, but violates the BD entropy condition. One of the key ingredients of the analysis here is to establish some new degenerate weighted estimates for the effective velocity via its transport properties, which do not require the initial BD entropy condition or the physical vacuum boundary condition. These new estimates enable one to obtain the upper bound for the first order spatial derivative of the flow map. Then the global-in-time regularity uniformly up to the vacuum boundary can be obtained by carrying out a series of singular or degenerate weighted energy estimates carefully designed for this system.