Mon, 22 Apr 2024

14:00 - 15:00
Lecture Room 3

Quantization of Bandlimited Graph Signals

Hanna Veselovska
(Technical University of Munich)
Abstract

Graph signals provide a natural representation of data in many applications, such as social networks, web information analysis, sensor networks, and machine learning. Graph signal & data processing is currently an active field of mathematical research that aims to extend the well-developed tools for analyzing conventional signals to signals on graphs while exploiting the underlying connectivity. A key challenge in this context is the problem of quantization, that is, finding efficient ways of representing the values of graph signals with only a finite number of bits.

In this talk, we address the problem of quantizing bandlimited graph signals. We introduce two classes of noise-shaping algorithms for graph signals that differ in their sampling methodologies. We demonstrate that these algorithms can efficiently construct quantized representatives of bandlimited graph-based signals with bounded amplitude.

Inspired by the results of Zhang et al. in 2022, we provide theoretical guarantees on the relative error between the true signal and its quantized representative for one of the algorithms.
As will be discussed, the incoherence of the underlying graph plays an important role in the quantization process. Namely, bandlimited signals supported on graphs of lower incoherence allow for smaller relative errors. We support our findings with various numerical experiments showcasing the performance of the proposed quantization algorithms for bandlimited signals defined on graphs with different degrees of incoherence.

This is joint work with Felix Krahmer (Technical University of Munich), He Lyu (Meta), Rayan Saab (University of California San Diego), and Rongrong Wang (Michigan State University).

Mon, 22 Apr 2024

13:00 - 14:00
N3.12

Mathematrix: Taboo Topics

Abstract

Join us for our first event of term to discuss those topics which are slightly taboo. We’ll be talking about periods, pregnancy, chronic illness, gender identity... This event is open to all but we will be taking extra steps to make sure it is a safe space for everyone. 

Thu, 18 Apr 2024

16:00 - 17:00
C2

Transportation Cost Spaces and their embeddings in L_1 spaces

Thomas Schulmprecht
(Texas A&M University)
Abstract

Transportation cost spaces are of high theoretical interest,  and they also are fundamental in applications in many areas of applied mathematics, engineering, physics, computer science, finance, and social sciences. 

Obtaining low distortion embeddings of transportation cost spaces into L_1 became important in the problem of finding nearest points, an important research subject in theoretical computer science. After introducing

these spaces we will present some results on upper  and lower estimates of the distortion of embeddings of Transportation Cost Spaces into L_1

Thu, 11 Apr 2024
18:00
The Auditorium, Citigroup Centre, London, E14 5LB

0DTEs: Trading, Gamma Risk and Volatility Propagation

Prof Grigory Vilkov
(Frankfurt School of Finance & Management)
Further Information

Registration is free but required. Register Here.

Abstract

Investors fear that surging volumes in short-term, especially same-day expiry (0DTE), options can destabilize markets by propagating large price jumps. Contrary to the intuition that 0DTE sellers predominantly generate delta-hedging flows that aggravate market moves, high open interest gamma in 0DTEs does not propagate past volatility. 0DTEs and underlying markets have become more integrated over time, leading to a marginally stronger link between the index volatility and 0DTE trading. Nonetheless, intraday 0DTE trading volume shocks do not amplify recent past index returns, inconsistent with the view that 0DTEs market growth intensifies market fragility.

About the speaker
Grigory Vilkov, Professor of Finance at the Frankfurt School of Finance and Management, holds an MBA from the University of Rochester and a Ph.D. from INSEAD, with further qualifications from Goethe University Frankfurt. He has been a professor at both Goethe University and the University of Mannheim.
His academic work focused on improving long-term portfolio strategies by building better expectations of risks, returns, and their dynamics. He is known for practical innovations in finance, such as developing forward-looking betas marketed by IvyDB OptionMetrics, establishing implied skewness and generalized lower bounds as cross-sectional stock characteristics, and creating measures for climate change exposure from earnings calls. His current research encompasses factor dispersions, factor and sector rotation, asset allocation with implied data, and machine learning in options analysis. 

Register Here.

Mon, 08 Apr 2024

11:00 - 12:00
Lecture Room 3

Heavy-Tailed Large Deviations and Sharp Characterization of Global Dynamics of SGDs in Deep Learning

Chang-Han Rhee
(Northwestern University, USA)
Abstract

While the typical behaviors of stochastic systems are often deceptively oblivious to the tail distributions of the underlying uncertainties, the ways rare events arise are vastly different depending on whether the underlying tail distributions are light-tailed or heavy-tailed. Roughly speaking, in light-tailed settings, a system-wide rare event arises because everything goes wrong a little bit as if the entire system has conspired up to provoke the rare event (conspiracy principle), whereas, in heavy-tailed settings, a system-wide rare event arises because a small number of components fail catastrophically (catastrophe principle). In the first part of this talk, I will introduce the recent developments in the theory of large deviations for heavy-tailed stochastic processes at the sample path level and rigorously characterize the catastrophe principle for such processes. 
The empirical success of deep learning is often attributed to the mysterious ability of stochastic gradient descents (SGDs) to avoid sharp local minima in the loss landscape, as sharp minima are believed to lead to poor generalization. To unravel this mystery and potentially further enhance such capability of SGDs, it is imperative to go beyond the traditional local convergence analysis and obtain a comprehensive understanding of SGDs' global dynamics within complex non-convex loss landscapes. In the second part of this talk, I will characterize the global dynamics of SGDs building on the heavy-tailed large deviations and local stability framework developed in the first part. This leads to the heavy-tailed counterparts of the classical Freidlin-Wentzell and Eyring-Kramers theories. Moreover, we reveal a fascinating phenomenon in deep learning: by injecting and then truncating heavy-tailed noises during the training phase, SGD can almost completely avoid sharp minima and hence achieve better generalization performance for the test data.  

This talk is based on the joint work with Mihail Bazhba, Jose Blanchet, Bohan Chen, Sewoong Oh, Zhe Su, Xingyu Wang, and Bert Zwart.
 

Mon, 08 Apr 2024

11:00 - 12:00
Lecture Room 3

Heavy-Tailed Large Deviations and Sharp Characterization of Global Dynamics of SGDs in Deep Learning

Chang-Han Rhee
(Northwestern University, USA)
Abstract

While the typical behaviors of stochastic systems are often deceptively oblivious to the tail distributions of the underlying uncertainties, the ways rare events arise are vastly different depending on whether the underlying tail distributions are light-tailed or heavy-tailed. Roughly speaking, in light-tailed settings, a system-wide rare event arises because everything goes wrong a little bit as if the entire system has conspired up to provoke the rare event (conspiracy principle), whereas, in heavy-tailed settings, a system-wide rare event arises because a small number of components fail catastrophically (catastrophe principle). In the first part of this talk, I will introduce the recent developments in the theory of large deviations for heavy-tailed stochastic processes at the sample path level and rigorously characterize the catastrophe principle for such processes. 

The empirical success of deep learning is often attributed to the mysterious ability of stochastic gradient descents (SGDs) to avoid sharp local minima in the loss landscape, as sharp minima are believed to lead to poor generalization. To unravel this mystery and potentially further enhance such capability of SGDs, it is imperative to go beyond the traditional local convergence analysis and obtain a comprehensive understanding of SGDs' global dynamics within complex non-convex loss landscapes. In the second part of this talk, I will characterize the global dynamics of SGDs building on the heavy-tailed large deviations and local stability framework developed in the first part. This leads to the heavy-tailed counterparts of the classical Freidlin-Wentzell and Eyring-Kramers theories. Moreover, we reveal a fascinating phenomenon in deep learning: by injecting and then truncating heavy-tailed noises during the training phase, SGD can almost completely avoid sharp minima and hence achieve better generalization performance for the test data.  

 

This talk is based on the joint work with Mihail Bazhba, Jose Blanchet, Bohan Chen, Sewoong Oh, Zhe Su, Xingyu Wang, and Bert Zwart.

Mon, 08 Apr 2024

11:00 - 12:00
Lecture Room 3

Heavy-Tailed Large Deviations and Sharp Characterization of Global Dynamics of SGDs in Deep Learning

Chang-Han Rhee
(Northwestern University, USA)
Abstract

While the typical behaviors of stochastic systems are often deceptively oblivious to the tail distributions of the underlying uncertainties, the ways rare events arise are vastly different depending on whether the underlying tail distributions are light-tailed or heavy-tailed. Roughly speaking, in light-tailed settings, a system-wide rare event arises because everything goes wrong a little bit as if the entire system has conspired up to provoke the rare event (conspiracy principle), whereas, in heavy-tailed settings, a system-wide rare event arises because a small number of components fail catastrophically (catastrophe principle). In the first part of this talk, I will introduce the recent developments in the theory of large deviations for heavy-tailed stochastic processes at the sample path level and rigorously characterize the catastrophe principle for such processes. 
The empirical success of deep learning is often attributed to the mysterious ability of stochastic gradient descents (SGDs) to avoid sharp local minima in the loss landscape, as sharp minima are believed to lead to poor generalization. To unravel this mystery and potentially further enhance such capability of SGDs, it is imperative to go beyond the traditional local convergence analysis and obtain a comprehensive understanding of SGDs' global dynamics within complex non-convex loss landscapes. In the second part of this talk, I will characterize the global dynamics of SGDs building on the heavy-tailed large deviations and local stability framework developed in the first part. This leads to the heavy-tailed counterparts of the classical Freidlin-Wentzell and Eyring-Kramers theories. Moreover, we reveal a fascinating phenomenon in deep learning: by injecting and then truncating heavy-tailed noises during the training phase, SGD can almost completely avoid sharp minima and hence achieve better generalization performance for the test data.  

This talk is based on the joint work with Mihail Bazhba, Jose Blanchet, Bohan Chen, Sewoong Oh, Zhe Su, Xingyu Wang, and Bert Zwart.

 

 

Bio:

Chang-Han Rhee is an Assistant Professor in Industrial Engineering and Management Sciences at Northwestern University. Before joining Northwestern University, he was a postdoctoral researcher at Centrum Wiskunde & Informatica and Georgia Tech. He received his Ph.D. from Stanford University. His research interests include applied probability, stochastic simulation, experimental design, and the theoretical foundation of machine learning. His research has been recognized with the 2016 INFORMS Simulation Society Outstanding Publication Award, the 2012 Winter Simulation Conference Best Student Paper Award, the 2023 INFORMS George Nicholson Student Paper Competition (2nd place), and the 2013 INFORMS George Nicholson Student Paper Competition (finalist). Since 2022, his research has been supported by the NSF CAREER Award.  
 

Thu, 04 Apr 2024

16:00 - 17:00
Virtual

Differential Equation-inspired Deep Learning for Node Classification and Spatiotemporal Forecasting

Noseong Park
Further Information
Abstract

Scientific knowledge, written in the form of differential equations, plays a vital role in various deep learning fields. In this talk, I will present a graph neural network (GNN) design based on reaction-diffusion equations, which addresses the notorious oversmoothing problem of GNNs. Since the self-attention of Transformers can also be viewed as a special case of graph processing, I will present how we can enhance Transformers in a similar way. I will also introduce a spatiotemporal forecasting model based on neural controlled differential equations (NCDEs). NCDEs were designed to process irregular time series in a continuous manner and for spatiotemporal processing, it needs to be combined with a spatial processing module, i.e., GNN. I will show how this can be done. 

Tue, 26 Mar 2024
16:00
Quillen Room

Global Galois representations with prescribed local monodromy

Lambert A'Campo
(MPIM Bonn)
Abstract

The compatibility of local and global Langlands correspondences is a central problem in algebraic number theory. A possible approach to resolving it relies on the existence of global Galois representations with prescribed local monodromy.  I will provide a partial solution by relating the question to its topological analogue. Both the topological and arithmetic version can be solved using the same family of projective hypersurfaces, which was first studied by Dwork.

Mon, 25 Mar 2024
15:00
L4

Uhlenbeck compactness theorems and isometric immersions

Professor Siran Li
(Shanghai Jiao Tong University)
Abstract

In this short course, we survey the celebrated weak and strong compactness theorems proved by Karen Uhlenbeck in 1982. These results are fundamental to the gauge theory and have found numerous applications to geometry, topology, and theoretical physics. The proof is based on the ingenious idea of putting connections into ``Uhlenbeck--Coulomb gauge'', which enables the use of standard elliptic and/or nonlinear PDE techniques, as well as involved local-to-global patching arguments. We aim at giving detailed explanation of the proof, and we shall also discuss the relation between Uhlenbeck's compactness and the classical geometric problem of isometric immersions of submanifolds into Euclidean spaces.

Thu, 21 Mar 2024

16:00 - 17:00
Virtual

Data-driven surrogate modelling for astrophysical simulations: from stellar winds to supernovae

Jeremy Yates and Frederik De Ceuster
(University College London)
Further Information
Abstract

The feedback loop between simulations and observations is the driving force behind almost all discoveries in astronomy. However, as technological innovations allow us to create ever more complex simulations and make ever more detailed observations, it becomes increasingly difficult to combine the two: since we cannot do controlled experiments, we need to simulate whatever we can observe. This requires efficient simulation pipelines, including (general-relativistic-)(magneto-)hydrodynamics, particle physics, chemistry, and radiation transport. In this talk, we explore the challenges associated with these modelling efforts and discuss how adopting data-driven surrogate modelling and proper control over model uncertainties, promises to unlock a gold mine of future discoveries. For instance, the application to stellar wind simulations can teach us about the origin of chemistry in our Universe and the building blocks for life, while supernova simulations can reveal exotic states of matter and elucidate the formation black holes.

Thu, 21 Mar 2024

16:00 - 17:00
C2

Biexact von Neumann algebras

Changying Ding
(UCLA)
Abstract

The notion of biexactness for groups was introduced by Ozawa in 2004 and has since become a major tool used for studying solidity of von Neumann algebras. We introduce the notion of biexactness for von Neumann algebras, which allows us to place many previous solidity results in a more systematic context, and naturally leads to extensions of these results. We will also discuss examples of solid factors that are not biexact. This is a joint work with Jesse Peterson.

Mon, 18 Mar 2024 16:15 -
Tue, 19 Mar 2024 17:00
L2

Characteristic Boundary Value Problems and Magneto-Hydrodynamics

Professor Paolo Secchi
(University of Brescia)
Further Information

This course is running as part of the National PDE Network Meeting being held in Oxford 18-21 March 2024, and jointly with the 13th Oxbridge PDE conference.

The course is broken into 3 sessions over two days, thus, with all sessions taking place in L2:

16:15-16:55:    Short Course II-1 Monday 18 March Characteristic Boundary Problems and Magneto-HydrodynamicsSECCHI-part 1_0.pdf

11:35-12:15:    Short Course II-2 Tuesday 19 March Characteristic Boundary Problems and Magneto-Hydrodynamics SECCHI-part 2.pdf

16:15-16:55:    Short Course II-3 Tuesday 19 March Characteristic Boundary Problems and Magneto-Hydrodynamics SECCHI-part 3.pdf

 

Abstract

The course aims to provide an introduction to the theory of initial boundary value problems for Friedrichs symmetrizable systems, with particular interest for the applications to the equations of ideal Magneto-Hydrodynamics (MHD). 

We first analyse different kinds of boundary conditions and present the main results about the well-posedness. In the case of the characteristic boundary, we discuss the possible loss of regularity in the normal direction to the boundary and the use of suitable anisotropic Sobolev spaces in MHD.  

Finally, we give a short introduction to the Kreiss-Lopatinskii approach and discuss a simple boundary value problem for the wave equation that may admit estimates with a loss of derivatives from the data. 

 

Mon, 18 Mar 2024 14:15 -
Tue, 19 Mar 2024 15:00
L2

Euler Equations and Mixed-Type Problems in Gas Dynamics and Geometry

Professor Dehua Wang
(University of Pittsburgh)
Further Information

This course is running as part of the National PDE Network Meeting being held in Oxford 18-21 March 2024, and jointly with the 13th Oxbridge PDE conference.

The course is broken into 3 sessions over two days, with all sessions taking place in L2:

14:15-14:55:    Short Course I-1 Monday 18 March

9:45-10:25:    Short Course I-2 Tuesday 19 March

14:15-14:55:    Short Course I-3 Tuesday 19 March

Euler Equations and Mixed-Type Problems in Gas Dynamics and Geometry WANG_Oxford2024.pdf

Abstract

 In this short course, we will discuss the Euler equations and applications in gas dynamics and geometry. First, the basic theory of Euler equations and mixed-type problems will be reviewed. Then we will present the results on the transonic flows past obstacles, transonic flows in the fluid dynamic formulation of isometric embeddings, and the transonic flows in nozzles. We will discuss global solutions and stability obtained through various techniques and approaches. The short course consists of three parts and is accessible to PhD students and young researchers.

Mon, 18 Mar 2024 12:30 -
Fri, 22 Mar 2024 13:00
Lecture Room 2, Mathmatical Institute

National PDE Network Meeting: Nonlinear PDEs of Mixed Type in Geometry and Mechanics /Joint with the 13th Oxbridge PDE Conference

Abstract

Meeting Theme:      

Analysis of Nonlinear PDEs of Mixed-Type (esp. Elliptic-Hyperbolic and Hyperbolic-Parabolic Mixed PDEs) and Related Topics

Meeting Place:    

Lecture Theatre 2, Mathematical Institute, University of Oxford

For more information and to view the programme

Registration is now closed.

Thu, 14 Mar 2024
16:00
L5

Free Interface Problems and Stabilizing Effects of Transversal Magnetic Fields

Professor Zhouping Xin
(The Chinese University of Hong Kong)
Abstract

Dynamical interface motions are important flow patterns and fundamental free boundary problems in fluid mechanics, and have attracted huge attention in the mathematical community. Such waves for purely inviscid fluids are subject to various instabilities such as Kelvin-Helmholtz and Rayleigh-Taylor instabilities unless other stabilizing effects such as surface tension, Taylor-sign conditions or dissipations are imposed. However, in the presence of magnetic fields, it has been known that tangential magnetic fields may have stabilizing effects for free surface waves such as plasma-vacuum or plasma-plasma interfaces (at least locally in time), yet whether transversal magnetic fields (which occurs often for interfacial waves for astrophysical plasmas) can stabilize typical free interfacial waves remain to be some open problems. In this talk, I will show the stabilizing effects of the transversal magnetic fields for some interfacial waves for both compressible and incompressible multi-dimensional magnetohydrodynamics (MHD).

First, I will present the local (in time) well-posedness in Sobolev space of multi- dimensional compressible MHD contact discontinuities, which are the most typical interfacial waves for astrophysical plasma and prototypical fundamental waves for systems of hyperbolic conservations. Such waves are characteristic discontinuities for which there is no flow across the discontinuity surface while the magnetic field crosses transversally, which leads to a two-phase free boundary problem that may have nonlinear Rayleigh- Taylor instability and whose front symbols have no ellipticity. We overcome such difficulties by exploiting full the transversality of the magnetic fields and designing a nonlinear approximate problem, which yields the local well-posed without loss of derivatives and without any other conditions such as Rayleigh-Taylor sign conditions or surface tension. Second, I will discuss some results on the global well-posedness of free interface problems for the incompressible inviscid resistive MHD with transversal magnetic fields. Both plasma-vacuum and plasma-plasma interfaces are studied. The global in time well-posedness of both interface problems in a horizontally periodic slab impressed by a uniform non-horizontal magnetic field near an equilibrium are established, which reveals the strong stabilizing effect of the transversal field as the global well- posedness of the free boundary incompressible Euler equations (without the irrotational assumptions) around an equilibrium is unknown. This talk is based on joint work with Professor Yanjin Wang. 

Tue, 12 Mar 2024

14:00 - 15:00
L3

A potpourri of pretty identities involving Catalan, Fibonacci and trigonometric numbers

Enoch Suleiman
(Federal University Gashua)
Abstract

Apart from the binomial coefficients which are ubiquitous in many counting problems, the Catalan and Fibonacci sequences seem to appear almost as frequently. There are also well-known interpretations of the Catalan numbers as lattice paths, or as the number of ways of connecting 2n points on a circle via non-intersecting lines. We start by obtaining some identities for sums involving the Catalan sequence. In addition, we use the beautiful binomial transform which allows us to obtain several pretty identities involving Fibonacci numbers, Catalan numbers, and trigonometric sums.

Fri, 08 Mar 2024
16:00
L1

Maths meets Stats

James Taylor (Mathematical Institute) and Anthony Webster (Department of Statistics)
Abstract

Speaker: James Taylor
Title: D-Modules and p-adic Representations

Abstract: The representation theory of finite groups is a beautiful and well-understood subject. However, when one considers more complicated groups things become more interesting, and to classify their representations is often a much harder problem. In this talk, I will introduce the classical theory, the particular groups I am interested in, and explain how one might hope to understand their representations through the use of D-modules - the algebraic incarnation of differential equations.

 

Speaker: Anthony Webster
Title: An Introduction to Epidemiology and Causal Inference

Abstract: This talk will introduce epidemiology and causal inference from the perspective of a statistician and former theoretical physicist. Despite their studies being underpinned by deep and often complex mathematics, epidemiologists are generally more concerned by seemingly mundane information about the relationships between potential risk factors and disease. Because of this, I will argue that a good epidemiologist with minimal statistical knowledge, will often do better than a highly trained statistician. I will also argue that causal assumptions are a necessary part of epidemiology, should be made more explicitly, and allow a much wider range of causal inferences to be explored. In the process, I will introduce ideas from epidemiology and causal inference such as Mendelian Randomisation and the "do calculus", methodological approaches that will increasingly underpin data-driven population research.  

Fri, 08 Mar 2024

15:00 - 16:00
L6

Topological Perspectives to Characterizing Generalization in Deep Neural Networks

Tolga Birdal
(Imperial College)
Further Information

 

Dr. Tolga Birdal is an Assistant Professor in the Department of Computing at Imperial College London, with prior experience as a Senior Postdoctoral Research Fellow at Stanford University in Prof. Leonidas Guibas's Geometric Computing Group. Tolga has defended his master's and Ph.D. theses at the Computer Vision Group under Chair for Computer Aided Medical Procedures, Technical University of Munich led by Prof. Nassir Navab. He was also a Doktorand at Siemens AG under supervision of Dr. Slobodan Ilic working on “Geometric Methods for 3D Reconstruction from Large Point Clouds”. His research interests center on geometric machine learning and 3D computer vision, with a theoretical focus on exploring the boundaries of geometric computing, non-Euclidean inference, and the foundations of deep learning. Dr. Birdal has published extensively in leading academic journals and conference proceedings, including NeurIPS, CVPR, ICLR, ICCV, ECCV, T-PAMI, and IJCV. Aside from his academic life, Tolga has co-founded multiple companies including Befunky, a widely used web-based image editing platform.

Abstract

 

Training deep learning models involves searching for a good model over the space of possible architectures and their parameters. Discovering models that exhibit robust generalization to unseen data and tasks is of paramount for accurate and reliable machine learning. Generalization, a hallmark of model efficacy, is conventionally gauged by a model's performance on data beyond its training set. Yet, the reliance on vast training datasets raises a pivotal question: how can deep learning models transcend the notorious hurdle of 'memorization' to generalize effectively? Is it feasible to assess and guarantee the generalization prowess of deep neural networks in advance of empirical testing, and notably, without any recourse to test data? This inquiry is not merely theoretical; it underpins the practical utility of deep learning across myriad applications. In this talk, I will show that scrutinizing the training dynamics of neural networks through the lens of topology, specifically using 'persistent-homology dimension', leads to novel bounds on the generalization gap and can help demystifying the inner workings of neural networks. Our work bridges deep learning with the abstract realms of topology and learning theory, while relating to information theory through compression.

 

Fri, 08 Mar 2024

14:00 - 15:00
L3

Modeling multiscale systems in bone mechanobiology

Professor Esther Reina Romo
(Department of Mechanical Engineering ETSI University of Seville)
Abstract

Bone regeneration processes are complex multiscale intrinsic mechanisms in bone tissue whose primary outcome is restoring function and form to a bone insufficiency. The effect of mechanics on the newly formed bone (the woven bone), is fundamental, at the tissue, cellular or even molecular scale. However, at these multiple scales, the identification of the mechanical parameters and their mechanisms of action are still unknown and continue to be investigated. This concept of mechanical regulation of biological processes is the main premise of mechanobiology and is used in this seminar to understand the multiscale response of the woven bone to mechanical factors in different bone regeneration processes: bone transport, bone lengthening and tissue engineering. The importance of a multidisciplinary approach that includes both in vivo and in silico modeling will be remarked during the seminar.

Fri, 08 Mar 2024

12:00 - 13:00
Quillen Room

Another Flavour of String Topology

Joe Davies
(University of Oxford)
Abstract

String topology is an umbrella under which lives a family of algebraic structures on the homology of the (compact-open) loop space of a closed smooth manifold, M. Of great interest are the string product and coproduct, in view of the failure of the latter to be a homotopy invariant. We will discuss some existing algebraic and geometric perspectives on these operations, and give some examples that probe the extent to which the string coproduct fails to be a homotopy invariant. We will sketch an alternative point of view on string topology as the study of the derived bornological smooth loop stack and explain why this is a promising model for the observed phenomena of string topology.

Thu, 07 Mar 2024

17:00 - 18:00

Some applications of motivic integration in group theory and arithmetic geometry

Itay Glazer
(University of Oxford)
Abstract
Let f:X-->Y be a polynomial map between smooth varieties, and let mu be a smooth, compactly supported measure on X(F), where F is a local field. An interesting phenomenon is that bad singularities of f manifest themselves in poor analytic behavior of the pushforward f_*(mu) of mu by f. 
I will discuss this phenomenon in two settings; the first is when f:A^n-->A^m is a polynomial map between affine spaces and mu is the Haar measure on Z_p^n, and the second is when f:G^2-->G is a word map (e.g. the commutator map (g,h)-->ghg^(-1)h^(-1)) between simple algebraic groups, and mu is a Haar measure on G(Z_p). 
In these cases (and in other "real life situations"), mu and consequently f_*(mu) are constructible measures in the sense of Cluckers-Loeser motivic integration. We utilize this fact to show that the analytic behavior of f_*(mu) cannot be too bad, leading to geometric and probabilistic applications.
 
Based on joint works with Yotam Hendel and Raf Cluckers.
Thu, 07 Mar 2024
16:00
L3

Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes

Dr Emilio Ferrucci
(Mathematical Institute University of Oxford)
Further Information

Please join us for refreshments outside L3 from 1530.

Abstract

Predicting real-world phenomena often requires an understanding of their causal relations, not just their statistical associations. I will begin this talk with a brief introduction to the field of causal inference in the classical case of structural causal models over directed acyclic graphs, and causal discovery for static variables. Introducing the temporal dimension results in several interesting complications which are not well handled by the classical framework. The main component of a constraint-based causal discovery procedure is a statistical hypothesis test of conditional independence (CI). We develop such a test for stochastic processes, by leveraging recent advances in signature kernels. Then, we develop constraint-based causal discovery algorithms for acyclic stochastic dynamical systems (allowing for loops) that leverage temporal information to recover the entire directed graph. Assuming faithfulness and a CI oracle, our algorithm is sound and complete. We demonstrate strictly superior performance of our proposed CI test compared to existing approaches on path-space when tested on synthetic data generated from SDEs, and discuss preliminary applications to finance. This talk is based on joint work with Georg Manten, Cecilia Casolo, Søren Wengel Mogensen, Cristopher Salvi and Niki Kilbertus: https://arxiv.org/abs/2402.18477 .

Thu, 07 Mar 2024
16:00
Lecture Room 4

Unitary Friedberg–Jacquet periods and anticyclotomic p-adic L-functions

Andrew Graham
(MPIM Bonn)
Abstract
I will describe the construction of a “square root” anticyclotomic p-adic L-function for symplectic type automorphic representations of the unitary group U(1, 2n-1). This can be seen as a higher dimensional generalisation of the work of Bertolini–Darmon–Prasanna, and one of the main ingredients is the p-adic iteration of Maass–Shimura operators in higher degrees of coherent cohomology. If time permits, I will describe the expected relation with Euler systems outside the region of interpolation.
Thu, 07 Mar 2024

15:00 - 16:00
L4

Tensorially absorbing inclusions

Pawel Sarkowicz
Abstract

We introduce the notion of a tensorially absorbing inclusion of C*-algebras, i.e., when a unital inclusion absorbs a strongly self-absorbing C*-algebra. This is a strong condition that ensures certain properties of both algebras (and their intermediate subalgebras) in a very strong sense. We discuss such inclusions, their non-triviality, and how often these inclusions appear.

Thu, 07 Mar 2024
14:00
N3.12

Physics Applications of Higher Symmetries

Alison Warman
Abstract

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 07 Mar 2024

14:00 - 15:00
Lecture Room 3

Stabilized Lagrange-Galerkin schemes for viscous and viscoelastic flow problems

Hirofumi Notsu
(Kanazawa University)
Abstract

Many researchers are developing stable and accurate numerical methods for flow problems, which roughly belong to upwind methods or characteristics(-based) methods. 
The Lagrange-Galerkin method proposed and analyzed in, e.g., [O. Pironneau. NM, 1982] and [E. S\"uli. NM, 1988] is the finite element method combined with the idea of the method of characteristics; hence, it belongs to the characteristics(-based) methods. The advantages are the CFL-free robustness for convection-dominated problems and the symmetry of the resulting coefficient matrix. In this talk, we introduce stabilized Lagrange-Galerkin schemes of second order in time for viscous and viscoelastic flow problems, which employ the cheapest conforming P1-element with the help of pressure-stabilization [F. Brezzi and J. Pitk\"aranta. Vieweg+Teubner, 1984] for all the unknown functions, i.e., velocity, pressure, and conformation tensor, reducing the number of DOFs. 
Focusing on the recent developments of discretizations of the (non-conservative and conservative) material derivatives and the upper-convected time derivative, we present theoretical and numerical results.

Thu, 07 Mar 2024

12:00 - 13:00
L3

Short- and late-time behaviours of Fokker-Planck equations for heterogeneous diffusions

Ralf Blossey
(CNRS & University of Lille, France)
Abstract

The Fokker-Planck equation is one of the major tools of statistical physics in the description of stochastic processes, with numerous applications in physics, chemistry and biology. In the case of heterogeneous diffusions, the formulation of the equation depends on the choice of the discretization of the stochastic integral in the underlying Langevin-equation due to the multiplicative noise. In the Fokker-Planck equation, the choice of discretization then enters as a parameter in the definition of drift and diffusion terms. I show how both short- and long-time limits are affected by this choice. In the long-time limit, the existence of normalizable probability distribution functions is not always guaranteed which can be remedied by invoking elements of infinite ergodic theory. 

[1] S. Giordano, F. Cleri, R. Blossey, Phys Rev E 107, 044111 (2023)

[2] T. Dupont, S. Giordano, F. Cleri, R. Blossey, arXiv:2401.01765 (2024)

Thu, 07 Mar 2024
12:00
L6

Well-posedness of nonlocal aggregation-diffusion equations and systems with irregular kernels

Yurij Salmaniw
(Mathematical Institute, University of Oxford)
Abstract

Aggregation-diffusion equations and systems have garnered much attention in the last few decades. More recently, models featuring nonlocal interactions through spatial convolution have been applied to several areas, including the physical, chemical, and biological sciences. Typically, one can establish the well-posedness of such models via regularity assumptions on the kernels themselves; however, more effort is required for many scenarios of interest as the nonlocal kernel is often discontinuous.

 

In this talk, I will present recent progress in establishing a robust well-posedness theory for a class of nonlocal aggregation-diffusion models with minimal regularity requirements on the interaction kernel in any spatial dimension on either the whole space or the torus. Starting with the scalar equation, we first establish the existence of a global weak solution in a small mass regime for merely bounded kernels. Under some additional hypotheses, we show the existence of a global weak solution for any initial mass. In typical cases of interest, these solutions are unique and classical. I will then discuss the generalisation to the $n$-species system for the regimes of small mass and arbitrary mass. We will conclude with some consequences of these theorems for several models typically found in ecological applications.

 

This is joint work with Dr. Jakub Skrzeczkowski and Prof. Jose Carrillo.

Thu, 07 Mar 2024

11:00 - 12:00
C3

Model theory of Booleanizations, products and sheaves of structures

Jamshid Derakhshan
(University of Oxford)
Abstract

I will talk about some model-theoretic properties of Booleanizations of theories, subdirect products of structures, and sheaves of structures. I will discuss a result of Macintyre from 1973 on model-completeness, and more recent results jointly with Ehud Hrushovski and with Angus Macintyre.

Wed, 06 Mar 2024
17:00
L5

The Conceptualization of Mathematics in Pharaonic Egypt

Annette Imhausen
(Goethe-Universität Frankfurt am Main)
Further Information

A joint History of Mathematics/Egyptology and Ancient Near Eastern Studies Seminar

Abstract

Ancient Egypt is credited (along with Mesopotamia) for providing the oldest extant mathematical texts. Since the 19th century, when the first edition of the Rhind mathematical papyrus was published, it has held an important role in the historiography of mathematics. One of the earliest researchers in the field of ancient Egyptian sciences was Otto Neugebauer who has been a major influence on the early development of the field. While research in Egyptian mathematics initially focused on those aspects that could be linked to its possible successors in modern mathematics, research has also revealed various characteristics that could not easily be transferred into a modern equivalent. In addition, research on other sciences, like medicine and astronomy, has yielded further evidence that a limitation on those aspects that have successors in modern sciences will at best give an incomplete picture of ancient scholarship. This will be explored in a new long-term project, which is briefly sketched. In the context of this project, Egyptian mathematics is also studied. The talk will present an example from the terminology used in Egyptian mathematical texts to describe this area of knowledge and explore its epistemological consequences for our studies of ancient Egyptian mathematics and aim to situate it in its ancient context.

Wed, 06 Mar 2024

16:00 - 17:00
L6

Anosov Flows and Topology

Michael Schmalian
(University of Oxford)
Abstract

We will give a relaxed introduction to some of the most classical dynamical systems - Anosov flows. These flows were highly influential in the development of ideas which the audience might be more familiar with. For example, Anosov flows give rise to exponential group growth and taut foliations, both of which we will discuss. Finally, we will talk about some recent work obstructing Anosov flows and their combinatorial analogs - veering triangulations

Tue, 05 Mar 2024

16:00 - 17:00
C2

Connes's Bicentralizer Problem

Amine Marrakchi
(ENS Lyons)
Abstract

In the world of von Neumann algebras, the factors that do not have a trace, the so-called type III factors, are the most difficult to study. Some of their key structural properties are still not well-understood. In this talk, I will give a gentle introduction to Connes's Bicentralizer Problem, which is the most important open problem in the theory of type III factors. I will then present some recent progress on this problem and its applications.

Tue, 05 Mar 2024
16:00
L6

Hybrid Statistics of the Maxima of a Random Model of the Zeta Function over Short Intervals

Christine Chang
(CUNY Graduate Center)
Abstract

We will present a matching upper and lower bound for the right tail probability of the maximum of a random model of the Riemann zeta function over short intervals.  In particular, we show that the right tail interpolates between that of log-correlated and IID random variables as the interval varies in length. We will also discuss a new normalization for the moments over short intervals. This result follows the recent work of Arguin-Dubach-Hartung and is inspired by a conjecture by Fyodorov-Hiary-Keating on the local maximum over short intervals.



 

Tue, 05 Mar 2024
15:00
L6

Sharp spectral gaps for scl from negative curvature

Alexis Marchand
Abstract

Stable commutator length is a measure of homological complexity of group elements, which is known to take large values in the presence of various notions of negative curvature. We will present a new geometric proof of a theorem of Heuer on sharp lower bounds for scl in right-angled Artin groups. Our proof relates letter-quasimorphisms (which are analogues of real-valued quasimorphisms with image in free groups) to negatively curved angle structures for surfaces estimating scl.

Tue, 05 Mar 2024

14:30 - 15:00
L6

Error Bound on Singular Values Approximations by Generalized Nystrom

Lorenzo Lazzarino
(Mathematical Institute (University of Oxford))
Abstract

We consider the problem of approximating singular values of a matrix when provided with approximations to the leading singular vectors. In particular, we focus on the Generalized Nystrom (GN) method, a commonly used low-rank approximation, and its error in extracting singular values. Like other approaches, the GN approximation can be interpreted as a perturbation of the original matrix. Up to orthogonal transformations, this perturbation has a peculiar structure that we wish to exploit. Thus, we use the Jordan-Wieldant Theorem and similarity transformations to generalize a matrix perturbation theory result on eigenvalues of a perturbed Hermitian matrix. Finally, combining the above,  we can derive a bound on the GN singular values approximation error. We conclude by performing preliminary numerical examples. The aim is to heuristically study the sharpness of the bound, to give intuitions on how the analysis can be used to compare different approaches, and to provide ideas on how to make the bound computable in practice.

Tue, 05 Mar 2024

14:00 - 15:00
C4

Elsa Arcaute: Multiscalar spatial segregation

Prof. Elsa Arcaute
Further Information

Elsa Arcaute is a Professor of Complexity Science at the Centre for Advanced Spatial Analysis (CASA), University College London. Her research focuses on modelling and analysing urban systems from the perspective of complexity sciences. Her main branches of research are urban scaling laws, hierarchies in urban systems, defining city boundaries, and the analysis of urban processes using percolation theory and network science.

Abstract

The talk introduces an analytical framework for examining socio-spatial segregation across various spatial scales. This framework considers regional connectivity and population distribution, using an information theoretic approach to measure changes in socio-spatial segregation patterns across scales. It identifies scales where both high segregation and low connectivity occur, offering a topological and spatial perspective on segregation. Illustrated through a case study in Ecuador, the method is demonstrated to identify disconnected and segregated regions at different scales, providing valuable insights for planning and policy interventions.

Tue, 05 Mar 2024

14:00 - 15:00
L4

Paradoxical Decompositions and Colouring Rules

Robert Simon
(London School of Economics)
Abstract

A colouring rule is a way to colour the points $x$ of a probability space according to the colours of finitely many measure preserving tranformations of $x$. The rule is paradoxical if the rule can be satisfied a.e. by some colourings, but by none whose inverse images are measurable with respect to any finitely additive extension for which the transformations remain measure preserving. We show that proper graph colouring as a rule can be paradoxical. And we demonstrate rules defined via optimisation that are paradoxical. A connection to measure theoretic paradoxes is established.

Tue, 05 Mar 2024

14:00 - 15:00
L5

Complex crystallographic groups and Seiberg--Witten integrable systems

Oleg Chalykh
(University of Leeds)
Abstract

For any smooth complex variety Y with an action of a finite group W, Etingof defines the global Cherednik algebra H_c and its spherical subalgebra B_c as certain sheaves of algebras over Y/W. When Y is an n-dimensional abelian variety, the algebra of global sections of B_c is a polynomial algebra on n generators, as shown by Etingof, Felder, Ma, and Veselov. This defines an integrable system on Y. In the case of Y being a product of n copies of an elliptic curve E and W=S_n, this reproduces the usual elliptic Calogero­­--Moser system. Recently, together with P. Argyres and Y. Lu, we proposed that many of these integrable systems at the classical level can be interpreted as Seiberg­­--Witten integrable systems of certain super­symmetric quantum field theories. I will describe our progress in understanding this connection for groups W=G(m, 1, n), corresponding to the case Y=E^n where E is an elliptic curves with Z_m symmetry, m=2,3,4,6. 

Tue, 05 Mar 2024

14:00 - 14:30
L6

A multilinear Nyström algorithm for low-rank approximation of tensors in Tucker format

Alberto Bucci
(University of Pisa)
Abstract

The Nyström method offers an effective way to obtain low-rank approximation of SPD matrices, and has been recently extended and analyzed to nonsymmetric matrices (leading to the randomized, single-pass, streamable, cost-effective, and accurate alternative to the randomized SVD, and it facilitates the computation of several matrix low-rank factorizations. In this presentation, we take these advancements a step further by introducing a higher-order variant of Nyström's methodology tailored to approximating low-rank tensors in the Tucker format: the multilinear Nyström technique. We show that, by introducing appropriate small modifications in the formulation of the higher-order method, strong stability properties can be obtained. This algorithm retains the key attributes of the generalized Nyström method, positioning it as a viable substitute for the randomized higher-order SVD algorithm.

Tue, 05 Mar 2024
13:00
L3

Double scaled SYK and the quantum geometry of 3D de Sitter space

Herman Verlinde
(Princeton)
Abstract

In this talk, I describe an exact duality between the double scaling limit of the SYK model and quantum geometry of de Sitter spacetime in three dimensions. The duality maps the so-called chord rules that specify the exact SYK correlations functions to the skein relations that govern the topological interactions between world-line operators in 3D de Sitter gravity.

This talk is part of the series of Willis Lamb Lectures in Theoretical Physics. Herman Verlinde is the Lamb Lecturer of 2024.

Tue, 05 Mar 2024
11:00
Lecture room 5

Level lines of the massive planar Gaussian free field

Léonie Papon
(University of Durham)
Abstract

The massive planar Gaussian free field (GFF) is a random distribution defined on a subset of the complex plane. As a random distribution, this field a priori does not have well-defined level lines. In this talk, we give a meaning to this concept by constructing a coupling between a massive GFF and a random collection of loops, called massive CLE_4, in which the loops can naturally be interpreted as the level lines of the field. This coupling is constructed by appropriately reweighting the law of the standard GFF-CLE_4 coupling and this construction can be seen as a conditional version of the path-integral formulation of the massive GFF. We then relate massive CLE_4 to a massive version of the Brownian loop soup. This provides a more direct construction of massive CLE_4 and proves a conjecture of Camia.

Mon, 04 Mar 2024
16:00
L2

The dispersion method and beyond: from primes to exceptional Maass forms

Alexandru Pascadi
(University of Oxford)
Abstract
The dispersion method has found an impressive number of applications in analytic number theory, from bounded gaps between primes to the greatest prime factors of quadratic polynomials. The method requires bounding certain exponential sums, using deep inputs from algebraic geometry, the spectral theory of GL2 automorphic forms, and GLn automorphic L-functions. We'll give a broad outline of this process, which combines various types of number theory; time permitting, we'll also discuss the key ideas behind some new results.
 
Mon, 04 Mar 2024
15:30
L4

Rigidity of ideal symmetric sets

Stephan Stadler
(Max Planck Institute for Mathematics)
Abstract

A subset in the ideal boundary of a CAT(0) space is called symmetric if every complete geodesic with one ideal boundary point
in the set has both ideal boundary points in the set. In the late 80s Eberlein proved that if a Hadamard manifold contains a non-trivial closed symmetric  subset in its ideal boundary, then its holonomy group cannot act transitively. This leads to rigidty via
the Berger-Simons Theorem. I will discuss rigidity of ideal symmetric sets in the general context of locally compact geodesically complete
CAT(0) spaces.
 

Mon, 04 Mar 2024
15:30
Lecture room 5

The Allen-Cahn equation with weakly critical initial datum

Dr Tommaso Rosati
(Dept. Mathematics, University of Warwick)
Abstract

Inspired by questions concerning the evolution of phase fields, we study the Allen-Cahn equation in dimension 2 with white noise initial datum. In a weak coupling regime, where the nonlinearity is damped in relation to the smoothing of the initial condition, we prove Gaussian fluctuations. The effective variance that appears can be described as the solution to an ODE. Our proof builds on a Wild expansion of the solution, which is controlled through precise combinatorial estimates. Joint works with Simon Gabriel, Martin Hairer, Khoa Lê and Nikos Zygouras.

Mon, 04 Mar 2024
14:15
L4

Significance of rank zero Donaldson-Thomas (DT) invariants in curve counting theories

Sohelya Feyzbakhsh
(Imperial College London)
Abstract
Fix a Calabi-Yau 3-fold X of Picard rank one satisfying the Bogomolov-Gieseker conjecture of Bayer-Macrì-Toda, such as the quintic 3-fold. I will first describe two methods to achieve explicit formulae relating rank zero Donaldson-Thomas (DT) invariants to Pandharipande-Thomas (PT) invariants using wall-crossing with respect to weak Bridgeland stability conditions on X. As applications, I will find sharp Castelnuovo-type bounds for PT invariants and explain how combining these explicit formulas with S-duality in physics enlarges the known table of Gopakumar-Vafa (GV) invariants. The second part is joint work with string theorists Sergei Alexandrov, Albrecht Klemm, Boris Pioline, and Thorsten Schimannek.
Mon, 04 Mar 2024

14:00 - 15:00
Lecture Room 3

On transport methods for simulation-based inference and data assimilation

Prof Youssef Marzouk
(MIT)
Abstract

Many practical Bayesian inference problems fall into the simulation-based or "likelihood-free" setting, where evaluations of the likelihood function or prior density are unavailable or intractable; instead one can only draw samples from the joint parameter-data prior. Learning conditional distributions is essential to the solution of these problems. 
To this end, I will discuss a powerful class of methods for conditional density estimation and conditional simulation based on transportation of measure. An important application for these methods lies in data assimilation for dynamical systems, where transport enables new approaches to nonlinear filtering and smoothing. 
To illuminate some of the theoretical underpinnings of these methods, I will discuss recent work on monotone map representations, optimization guarantees for learning maps from data, and the statistical convergence of transport-based density estimators.
 

Fri, 01 Mar 2024
16:00
L1

Departmental Colloquium: The role of depth in neural networks: function space geometry and learnability

Professor Rebecca Willett (University of Chicago)
Further Information

Rebecca Willett is a Professor of Statistics and Computer Science & the Faculty Director of AI at the Data Science Institute, with a courtesy appointment at the Toyota Technological Institute at Chicago. Her research is focused on machine learning foundations, scientific machine learning, and signal processing. She is the Deputy Director for Research at the NSF-Simons Foundation National Institute for Theory and Mathematics in Biology and a member of the Executive Committee for the NSF Institute for the Foundations of Data Science. She is the Faculty Director of the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship and helps direct the Air Force Research Lab University Center of Excellence on Machine Learning

Abstract

Neural network architectures play a key role in determining which functions are fit to training data and the resulting generalization properties of learned predictors. For instance, imagine training an overparameterized neural network to interpolate a set of training samples using weight decay; the network architecture will influence which interpolating function is learned. 

In this talk, I will describe new insights into the role of network depth in machine learning using the notion of representation costs – i.e., how much it “costs” for a neural network to represent some function f. Understanding representation costs helps reveal the role of network depth in machine learning. First, we will see that there is a family of functions that can be learned with depth-3 networks when the number of samples is polynomial in the input dimension d, but which cannot be learned with depth-2 networks unless the number of samples is exponential in d. Furthermore, no functions can easily be learned with depth-2 networks while being difficult to learn with depth-3 networks. 

Together, these results mean deeper networks have an unambiguous advantage over shallower networks in terms of sample complexity. Second, I will show that adding linear layers to a ReLU network yields a representation cost that favors functions with latent low-dimension structure, such as single- and multi-index models. Together, these results highlight the role of network depth from a function space perspective and yield new tools for understanding neural network generalization. 

Fri, 01 Mar 2024

15:00 - 16:00
L6

Applied Topology TBC

Zoe Cooperband
(University of Pennsylvania)
Further Information

Dr  Zoe Copperband is a member of the Penn Engineering GRASP Laboratory. Her recent preprint, Towards Homological Methods in Graphic Statics, can be found here.

Fri, 01 Mar 2024

14:00 - 15:00
L3

Extreme pushed and pulled fronts

Professor John King
(School of Mathematical Sciences University of Nottingham)
Abstract

I shall say some stuff about quasilinear reaction-diffusion equations, motivated by tissue growth in particular.