Some model theory of Quadratic Geometries
Abstract
The Mixing Conjecture of Michel-Venkatesh has now taken on additional arithmetic significance via Wiles' new approach to modularity. Inspired by this, we present the best currently available method, pioneered by Khayutin's proof for quaternion algebras over the rationals, which we have successfully applied to totally real fields. The talk will overview the method, which brings a suprising combination of ergodic theory, analysis and geometry to bear on this arithmetic problem.
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.
In this talk, we consider the problem of approximating failure regions. More specifically, given a costly computational model with random parameters and a failure condition, our objective is to determine the parameter region in which the failure condition is likely to not be satisfied. In mathematical terms, this problem can be cast as approximating the level set of a probability density function. We solve this problem by dividing it into two: 1) The design of an efficient Monte Carlo strategy for probability estimation. 2) The construction of an efficient algorithm for level-set approximation. Following this structure, this talk is comprised of two parts:
In the first part, we present a new multi-output multilevel best linear unbiased estimator (MLBLUE) for approximating expectations. The advantage of this estimator is in its convenience and optimality: Given any set of computational models with known covariance structure, MLBLUE automatically constructs a provenly optimal estimator for any (finite) number of quantities of interest. Nevertheless, the optimality of MLBLUE is tied to its optimal set-up, which requires the solution of a nonlinear optimization problem. We show how the latter can be reformulated as a semi-definite program and thus be solved reliably and efficiently.
In the second part, we construct an adaptive level-set approximation algorithm for smooth functions corrupted by noise in $\mathbb{R}^d$. This algorithm only requires point value data and is thus compatible with Monte Carlo estimators. The algorithm is comprised of a criterion for level-set adaptivity combined with an a posteriori error estimator. Under suitable assumptions, we can prove that our algorithm will correctly capture the target level set at the same cost complexity of uniformly approximating a $(d-1)$-dimensional function.
Mathematical modelling can support decontamination processes in a variety of ways. In this talk, we focus on the contamination step: understanding how much of a chemical spill has seeped into the Earth or a building material, and how far it has travelled, are essential for making good decisions about how to clean it up.
We consider an infiltration problem in which a chemical is poured on an initially unsaturated porous medium, and seeps into it via capillary action. Capillarity-driven flow through partially-saturated porous media is often modelled using Richards’ equation, which is a simplification of the Buckingham-Darcy equation in the limit where the infiltrating phase is much more viscous than the receding phase. In this talk, I will explore the limitations of Richards equation, and discuss some scenarios in which predictions for small-but-finite viscosity ratios are very different to the Richards simplification.
I will report on a joint work with Pablo Destic and Nuno Hultberg, about some applications of Globally Valued Fields (GVFs) and I will describe a density result that we needed, which turns out to be connected to Riemann-Zariski and Berkovich spaces.
This talk will serve as an introduction to the outer automorphism group of a free group, its properties and the objects used to study it: especially train track maps (with various adjectives) and Culler--Vogtmann outer space. If time allows I will discuss recent work joint with Hillen, Lyman and Pfaff on stretch factors in rank 3, but the goal of the talk will be to introduce the topic well rather than to speedrun towards the theorem.
Recently, Elliott, Li, and Niu proved a classification theorem for Villadsen-type algebras using the combination of the Elliott invariant and the radius of comparison, an invariant that was introduced by Toms in order to distinguish between certain non-isomorphic AH algebras with the same Elliott invariant. This might have raised the prospect that the Elliott classification program can be extended beyond the Z-stable case by adding the radius of comparison to the invariant. I will discuss a recent preprint in which we show that this is not the case: we construct an uncountable family of nonisomorphic AH algebras with the same Elliott and same radius of comparison. We can distinguish between them using a finer invariant, which we call the local radius of comparison. This is joint work with N. Christopher Phillips.
We consider quadratic deformations of the q-symmetric algebras A_q given by x_i x_j = q_{ij} x_j x_i, for q_{ij} in C*. We explicitly describe the Hochschild cohomology and compute the weights of the torus action (dilating the x_i variables). We describe new families of filtered deformations of A_q, which are Koszul and Calabi—Yau algebras. This also applies to abelian category deformations of coh(P^n), and for n=3 we give examples having no homogeneous coordinate ring. We then focus on the case where n is even and the deformations are obtainable from deformation quantisation of toric log symplectic structures on P^n. In this case we construct formally universal families of quadratic algebras deforming A_q, obtained by tensoring filtered deformations and Feigin—Odesskii elliptic algebras. The universality is a consequence of a beautiful combinatorial classification of deformations via "smoothing diagrams", a collection of disjoint cycles and segments in the complete graph on n vertices, viewed as the dual complex for the coordinate hyperplanes in P^{n-1}. Already for n=5 there are 40 of these, mostly entirely new. Our proof also applies to deformations of Poisson structures, recovering the P^n case of our previous results on general log symplectic varieties with normal crossings divisors, which motivated this project. This is joint work with Mykola Matviichuk and Brent Pym.
A cluster graph is a disjoint union of complete graphs. We consider the random $G(n,p)$ graph on $n$ vertices with connection probability $p$, conditioned on the rare event of being a cluster graph. There are three main motivations for our study.
This is joint work with Martijn Gösgens, Lukas Lüchtrath, Elena Magnanini and Élie de Panafieu.
One of the major insights gained from holographic duality is the relation between the physics of black holes and quantum chaotic systems. This relation is made precise in the duality between two dimensional JT gravity and random matrix theory. In this work, we generalize this to a duality between AdS3 gravity and a random ensemble of approximate CFT's. The latter is described by a combined tensor and matrix model, describing the OPE coefficients and spectrum of a theory that approximately satisfies the bootstrap constraints. We show that the Feynman diagrams of the random ensemble produce a sum over 3 manifolds that agrees with the partition function of 3d gravity. A crucial element of this dictionary is the Virasoro TQFT, which defines the bulk gravitational path integral via the cutting and sewing relations of topological field theory. Time permitting, we will explain why this TQFT has gravitational edge modes degrees of freedom whose entanglement gives rise to gravitational entropy.
In this talk, we present a graph discretized approximation scheme for diffusions with drift and killing on a complete Riemannian manifold M. More precisely, for a given Schrödinger operator with drift on M having the form A = — Δ — b + V , we introduce a family of discrete time random walks in the ow generated by the drift b with killing on a sequence of proximity graphs, which are constructed by partitions cutting M into small pieces. As a main result, we prove that the drifted Schrodinger semigroup {e—tA}t≥0 is approximated by discrete semigroups generated by the family of random walks with a suitable scale change. This result gives a nite dimensional summation approximation of a Feynman-Kac type functional integral over M. Furthermore, when M is compact, we also obtain a quantitative error estimate of the convergence.
This talk is based on a joint work with Satoshi Ishiwata (Yamagata University), and the full paper can be found on https://doi.org/10.1007/s00208-024-02809-9.
Sessions led by Dr Clemens Sämann will take place on:
Tuesday, 14 May 10am-12pm C5 (Lecture)
Thursday, 16 May 10am-12pm C5 (Lecture)
Tuesday, 28 May 10am-12pm C5 (Reading group)
Participants should have a good knowledge of differential geometry and metric spaces (basics of Lorentzian geometry will be reviewed). Some knowledge of measure theory, functional analysis (in particular Sobolev spaces) and optimal transport is recommended but we will try to be as self-contained as possible.
Course Overview
The course gives an introduction to a topic of current interest in Lorentzian geometic analysis and mathematical General Relativity: an approach to nonregular spacetimes based on a “metric” point of view.
Learning Outcomes
Becoming acquainted with Lorentzian length spaces, sectional and Ricci curvature bounds for non-regular Lorentzian spaces and the appropriate techniques.
Course Synopsis
Lecture 1a: Review of Lorentzian geometry, spaces of constant curvature, causality theory, singularity theorems.
Lecture 1b: Introduction to Lorentzian length spaces, timelike sectional curvature bounds.
Lecture 2a: Optimal transport, timelike Ricci curvature bounds
Lecture 2b: Sobolev calculus for time functions. Literature: [O’N83, KS18, CM20].
Reading group: Depending on student’s interest one could discuss the papers [GKS19, AGKS21, ABS22].
References
[ABS22] L. Aké Hau, S. Burgos, and D. A. Solis. Causal completions as Lorentzian pre-length spaces. General Relativity and Gravitation, 54(9), 2022. doi:10.1007/s10714-022-02980-x.
[AGKS21] S. B. Alexander, M. Graf, M. Kunzinger, and C. Sämann. Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems. Comm. Anal. Geom., to appear, 2021. doi:10.48550/arXiv.1909.09575. arXiv:1909.09575 [math.MG].
[CM20] F. Cavalletti and A. Mondino. Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications. Cambridge Journal of Mathematics, to appear, arXiv:2004.08934 [math.MG], 2020. doi:10.48550/arXiv.2004.08934.
[GKS19] J. D. E. Grant, M. Kunzinger, and C. Sämann. Inextendibility of spacetimes and Lorentzian length spaces. Ann. Global Anal. Geom., 55(1):133–147, 2019. doi:10.1007/s10455-018-9637-x.
[KS18] M. Kunzinger and C. Sämann. Lorentzian length spaces. Ann. Glob. Anal. Geom., 54(3):399–447, 2018. doi:10.1007/s10455-018-9633-1.
[O’N83] B. O’Neill. Semi-Riemannian geometry with applications to relativity, volume 103 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.
Should you be interested in taking part in the course, please send an email to @email by 10 May 2024.
Join us on Monday 13th May at 6:30 in L2 to celebrate International Women in Maths Day. Traditionally celebrated on May 12th, Mirzakhani's birthday, this is an occasion to celebrate all the wonderful women and non-binary people that make up our mathematical community. This event will be open to all, regardless of gender identity.
Functoriality is a key feature in Langlands’ conjectured relationship between automorphic representations and Galois representations; it predicts that certain Galois representations are automorphic, i.e. should come from automorphic representations. We discuss the idea of $p$-adic propagation of automorphy, which seeks to establish the automorphy of everything in a “neighborhood” given the automorphy of something in that neighborhood. The “neighborhoods” that we consider will be the irreducible components of a $p$-adic analytic space called the eigenvariety, which parameterizes $p$-adic automorphic representations. This technique was introduced by Newton and Thorne in their proof of symmetric power functoriality, and can be adapted to investigate similar problems.
We consider the general framework of distributionally robust optimization under a martingale restriction. We provide explicit expressions for model risk sensitivities in this context by considering deviations in the Wasserstein distance and the corresponding adapted one. We also extend the dual formulation to this context.
The quadratic Euler characteristic of an algebraic variety is a (virtual) symmetric bilinear form which refines the topological Euler characteristic and contains interesting arithmetic information when the base field is not algebraically closed. For smooth projective varieties, it has a quite concrete expression in terms of the cup product and Serre duality for Hodge cohomology. However, for singular varieties, it is defined abstractly (using either cut and paste relations or motivic homotopy theory) and is still rather mysterious. I will first introduce this invariant and place it in the broader context of quadratic enumerative geometry. I will then explain some progress on concrete computations, first for symmetric powers (joint with Lenny Taelman) and second for conductor formulas for hypersurface singularities (older results with Marc Levine and Vasudevan Srinivas on the one hand, and joint work in progress with Ran Azouri, Niels Feld, Yonathan Harpaz and Tasos Moulinos on the other).
Data that have an intrinsic network structure can be found in various contexts, including social networks, biological systems (e.g., protein-protein interactions, neuronal networks), information networks (computer networks, wireless sensor networks), economic networks, etc. As the amount of graphical data that is generated is increasingly large, compressing such data for storage, transmission, or efficient processing has become a topic of interest. In this talk, I will give an information theoretic perspective on graph compression.
The focus will be on compression limits and their scaling with the size of the graph. For lossless compression, the Shannon entropy gives the fundamental lower limit on the expected length of any compressed representation. I will discuss the entropy of some common random graph models, with a particular emphasis on our results on the random geometric graph model.
Then, I will talk about the problem of compressing a graph with side information, i.e., when an additional correlated graph is available at the decoder. Turning to lossy compression, where one accepts a certain amount of distortion between the original and reconstructed graphs, I will present theoretical limits to lossy compression that we obtained for the Erdős–Rényi and stochastic block models by using rate-distortion theory.
What makes a good talk? This year, graduate students and postdocs will give a series talks on how to give talks! There may even be a small prize for the audience’s favourite.
If you’d like to have a go at informing, entertaining, or just have an axe to grind about a particularly bad talk you had to sit through, we’d love to hear from you (you can email Ric Wade or ask any of the organizers).
The role of tissue stiffness in controlling cell behaviours ranging from proliferation to signalling and activation is by now well accepted. A key focus of experimental studies into mechanotransduction are focal adhesions, localised patches of strong adhesion, where cell signalling has been established to occur. However, these adhesion sites themselves alter the mechanical equilibrium of the system determining the force balance and work done. To explore this I have developed an active matter continuum description of cellular contractility and will discuss recent results on the specific role of spatial positioning of adhesions in mechanotransduction. I show using energy arguments why the experimentally observed arrangements of focal adhesions develop and the implications this has for stiffness sensing and cellular contractility control. I will also show how adhesions play distinct roles in single cells and tissue layers respectively drawing on recent experimental work with Dr JR Davis (Manchester University) and Dr Nic Tapon (Crick Institute) with applications to epithelial layers and organoids.
The orbit method is a fundamental tool to study a finite dimensional solvable Lie algebra g. It relates the annihilators of simple U(g)-module to the coadjoint orbits of the adjoint group on g^* . In my talk, I will extend this story to the Witt algebra – a simple (non-solvable) infinite dimensional Lie algebra which is important in physics and representation theory. I will construct an induced module from an element of W^* and show that its annihilator is a primitive ideal. I will also construct an algebra homomorphism that allows one to relate the orbit method for W to that of a finite dimensional solvable algebra.
The chiralization in the title denotes a certain procedure which turns cluster X-varieties into q-W algebras. Many important notions from cluster and q-W worlds, such as mutations, global functions, screening operators, R-matrices, etc emerge naturally in this context. In particular, we discover new bosonizations of q-W algebras and establish connections between previously known bosonizations. If time permits, I will discuss potential applications of our approach to the study of 3d topological theories and local systems with affine gauge groups. This talk is based on a joint project with J. Shiraishi, J.E. Bourgine, B. Feigin, A. Shapiro, and G. Schrader.
There have been a lot of interests in understanding the behaviour of random multiplicative functions, which are probabilistic models for deterministic arithmetic functions such as the Möbius function and Dirichlet characters. Despite recent advances, the limiting distributions of partial sums of random multiplicative functions remain mysterious even at the conjectural level. In this talk, I shall discuss the so-called $L^2$ regime of twisted sums and provide a precise answer to the distributional problem. This is based on ongoing work with Ofir Gorodetsky.
Please join us for reshments outside the lecture room from 1530.
In this seminar we introduce a portfolio optimisation framework, in which the use of rough path signatures (Lyons, 1998) provides a novel method of incorporating path-dependencies in the joint signal-asset dynamics, naturally extending traditional factor models, while keeping the resulting formulas lightweight, tractable and easily interpretable. Specifically, we achieve this by representing a trading strategy as a linear functional applied to the signature of a path (which we refer to as “Signature Trading” or “Sig-Trading”). This allows the modeller to efficiently encode the evolution of past time-series observations into the optimisation problem. In particular, we derive a concise formulation of the dynamic mean-variance criterion alongside an explicit solution in our setting, which naturally incorporates a drawdown control in the optimal strategy over a finite time horizon. Secondly, we draw parallels between classical portfolio stategies and Sig-Trading strategies and explain how the latter leads to a pathwise extension of the classical setting via the “Signature Efficient Frontier”. Finally, we give explicit examples when trading under an exogenous signal as well as examples for momentum and pair-trading strategies, demonstrated both on synthetic and market data. Our framework combines the best of both worlds between classical theory (whose appeal lies in clear and concise formulae) and between modern, flexible data-driven methods (usually represented by ML approaches) that can handle more realistic datasets. The advantage of the added flexibility of the latter is that one can bypass common issues such as the accumulation of heteroskedastic and asymmetric residuals during the optimisation phase. Overall, Sig-Trading combines the flexibility of data-driven methods without compromising on the clarity of the classical theory and our presented results provide a compelling toolbox that yields superior results for a large class of trading strategies.
This is based on works with Blanka Horvath and Magnus Wiese.
Please note; the seminar is taking place in Lecture Room 4 on this occasion
In this talk, we discuss continuous in time dynamics for the problem of approaching the set of zeros of a single-valued monotone and continuous operator V . Such problems are motivated by minimax convexconcave and, in particular, by convex optimization problems with linear constraints. The central role is played by a second-order dynamical system that combines a vanishing damping term with the time derivative of V along the trajectory, which can be seen as an analogous of the Hessian-driven damping in case the operator is originating from a potential. We show that these methods exhibit fast convergence rates for kV (z(t))k as t ! +1, where z( ) denotes the generated trajectory, and for the restricted gap function, and that z( ) converges to a zero of the operator V . For the corresponding implicit and explicit discrete time models with Nesterov’s momentum, we prove that they share the asymptotic features of the continuous dynamics.
Extensions to variational inequalities and fixed-point problems are also addressed. The theoretical results are illustrated by numerical experiments on bilinear games and the training of generative adversarial networks.
What do fiber polymers and ice sheets have in common? They both flow with a directionally dependent - anisotropic - viscosity. This behaviour occurs in other geophysical flows, such as the Earth's mantle, where a material's microstructure affects its large-scale flow. In ice, the alignment of crystal orientations can cause the viscosity to vary by an order of magnitude, consequently having a strong impact on the flow of ice sheets and glaciers. However, the effect of anisotropy on large-scale flow is not well understood, due to a lack of understanding of a) the best physical approximations to model crystal orientations, and b) how crystal orientations affect rheology. In this work, we aim to address both these questions by linking rheology to crystal orientation predictions, and testing a range of models against observations from the Greenland ice sheet. The results show assuming all grains experience approximately the same stress provides realistic predictions, and we suggest a set of equations and parameters which can be used in large-scale models of ice sheets.
I will present a recent work with G. Kocharyan, where we show the undecidability of the following two problems: given a finitely generated subgroup G of GL(n,Q), a) determine whether G has a non-identity element whose (i,j) entry is equal to zero, and b) determine whether the stabilizer of a given vector in G is non-trivial. Undecidability of problem b) answers a question of Dixon from 1985. The proofs reduce to the undecidability of the word problem for finitely presented groups.
I'll talk about the Morse local-to-global property and try to convince you that is a good property. There are three reasons. Firstly, it is satisfied by many examples of interest. Secondly, it allows to prove many theorems. Thirdly, it sits nicely in the larger program of classifying groups up to quasi-isometry and it has connections with open questions.
A $C^*$-diagonal is a certain commutative subalgebra of a $C^∗$ -algebra with a rich structure. Renault and Kumjian showed that finding a $C^*$ -diagonal of a $C^∗$-algebra is equivalent to realizing the $C^*$-algebra via a groupoid. This establishes a close connection between $C^∗$-diagonals and dynamics and allows one to relate the geometric properties of groupoids to the properties of $C^∗$ -diagonals.
In this talk, I will explore the unique pure state extension property of an Abelian $C^*$-subalgebra of a 1-dim NCCW complex, the approximation of morphisms between two 1-dim NCCW complexes by $C^*$-diagonal preserving morphisms, and the existence of $C^*$-diagonal in inductive limits of certain 1-dim NCCW complexes.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Coboundary expansion is a notion introduced by Linial and Meshulam, and by Gromov that combines combinatorics topology and linear algebra. Kaufman and Lubotzky observed its relation to "Property testing", and in recent years it has found several applications in theoretical computer science, including for error correcting codes (both classical and quantum), for PCP agreement tests, and even for studying polarization in social networks.
In the talk I will introduce this notion and some of its applications. No prior knowledge is assumed, of course.
Oka theory is about the validity of the h-principle in complex analysis and geometry. In this expository lecture, I will trace its main developments, from the classical results of Kiyoshi Oka (1939) and Hans Grauert (1958), through the seminal work of Mikhail Gromov (1989), to the introduction of Oka manifolds (2009) and the present state of knowledge. The lecture does not assume any prior exposure to this theory.
We present a spectral method that converges exponentially for a variety of fractional integral equations on a closed interval. The method uses an orthogonal fractional polynomial basis that is obtained from an appropriate change of variable in classical Jacobi polynomials. For a problem arising from time-fractional heat and wave equations, we elaborate the complexities of three spectral methods, among which our method is the most performant due to its superior stability. We present algorithms for building the fractional integral operators, which are applied to the orthogonal fractional polynomial basis as matrices.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
I will talk about the behaviour of random maps on surfaces (for example, random triangulations) of given genus, when their size tends to infinity. Such questions can be asked from the viewpoint of the local behaviour (Benjamini-Schramm convergence) or global behaviour (diameter, Gromov Hausdorff convergence), and in both cases, much combinatorics is involved. I will survey the landmark results for the case of fixed genus, and state very recent results in which we manage to address the "high genus" regime, when the genus grows proportionally to the size – for this regime we establish isoperimetric inequalities and prove the long-suspected fact that the diameter is logarithmic with high probability.
Based on joint work with Thomas Budzinski and Baptiste Louf.
The scattering matrix in quantum mechanics must be unitary to ensure the conservation of the number of particles, hence their
eigenvalues are unimodular. In systems with fully developed Quantum Chaos the statistics of those unimodular
eigenvalues is well described by the Poisson kernel.
However, in real experiments the associated scattering matrix is sub-unitary due to intrinsic losses, and
the moduli of S-matrix eigenvalues become non-trivial, yet the corresponding theory is not well-developed in general.
I will present some results for the mean density of those moduli in the framework of random matrix models for the case of broken time-reversal invariance,
and discuss a way to get a generalization of the Poisson kernel to systems with uniform losses.
A graph $X$ is defined inductively to be $(a_0, . . . , a_{n−1})$-regular if $X$ is $a_0$-regular and for every vertex $v$ of $X$, the sphere of radius 1 around $v$ is an $(a_1, . . . , a_{n−1})$-regular graph. A family $F$ of graphs is said to be an expander family if there is a uniform lower bound on the Cheeger constant of all the graphs in $F$.
After briefly (re)introducing Coxeter groups and their geometries, we will describe how they can be used to construct very regular polytopes, which in turn can yield highly regular graphs. We will then use the super-approximation machinery, whenever the Coxeter group is hyperbolic, to obtain the expansion of these families of graphs. As a result, we obtain interesting infinite families of highly regular expander graphs, some of which are related to the exceptional groups.
The talk is based on work joint with Conder, Lubotzky, and Schillewaert.
The progress in our understanding of symmetries in QFT has led to the proposal that the complete information on a symmetry structure is encoded in a TQFT in one dimension higher, known as the Symmetry TFT. This picture is well understood for finite symmetries, and I will explain the extension to continuous symmetries in the first part of the talk, based on a paper with F. Benini. This extension requires studying new TQFTs with a non-compact spectrum of operators. Like for finite symmetries, these TQFTs capture anomalies and topological manipulations via their topological boundary conditions. The main new ingredient for continuous symmetries is dynamical gauging, which is described by maps between different TQFTs. I will use this to derive the Symmetry TFT for the non-invertible chiral symmetry of QED. Moreover, the various TQFTs related by dynamical gauging arise as different boundary conditions of a unique TQFT in two dimensions higher. In the second part of the talk, based on work in progress with F. Benini and G. Rizi, I will use these tools to derive some new connections between the Symmetry TFTs and the universal EFTs describing the spontaneous symmetry breaking of any (generalized) global symmetry.
In this talk, we study concentration properties for laws of non-linear Gaussian functionals on metric spaces. Our focus lies on measures with non-Gaussian tail behaviour which are beyond the reach of Talagrand’s classical Transportation-Cost Inequalities (TCIs). Motivated by solutions of Rough Differential Equations and relying on a suitable contraction principle, we prove generalised TCIs for functionals that arise in the theory of regularity structures and, in particular, in the cases of rough volatility and the two-dimensional Parabolic Anderson Model. Our work also extends existing results on TCIs for diffusions driven by Gaussian processes.
We study fully discrete approximation of the 2D Euler equations for ideal homogeneous fluids. We focus on spectral methods and discuss rates of convergence of velocity and vorticity under different assumptions on the smoothness of the data.
Modular curves are moduli spaces of elliptic curves equipped with certain level structures. This talk will be concerned with how the attendant theory has been used to answer questions about the modularity of elliptic curves over $\mathbb{Q}$ and over quadratic fields. In particular, we will outline two instances of the modularity switching technique over totally real fields: the 3-5 trick of Wiles and the 3-7 trick of Freitas, Le Hung and Siksek. The recent work of Caraiani and Newton over imaginary quadratic fields naturally leads one to consider the descent theory of 'twisted' modular curves, and this will be the focus of the final part of the talk.
The objects of arithmetic geometry are not manifolds. Some concepts from differential geometry admit analogues in arithmetic, but they are not straightforward. Nevertheless, there is a growing sense that the right way to understand certain Langlands phenomena is to study quantum field theories on these objects. What hope is there of making this thought precise? I will propose the beginnings of a mathematical framework via a general theory of factorization algebras. A new feature is a subtle piece of additional structure on our objects – what I call an _isolability structure_ – that is ordinarily left implicit.
This talk, based on joint work with Alexander Zlokapa, concerns Bayesian inference with neural networks.
I will begin by presenting a result giving exact non-asymptotic formulas for Bayesian posteriors in deep linear networks. A key takeaway is the appearance of a novel scaling parameter, given by # data * depth / width, which controls the effective depth of the posterior in the limit of large model and dataset size.
Additionally, I will explain some quite recent results on the role of this effective depth parameter in Bayesian inference with deep non-linear neural networks that have shaped activations.
Speaker: Mattia Magnabosco (Newton Fellow, Maths)
Title: Synthetic Ricci curvature bounds in sub-Riemannian manifolds
Abstract: In Riemannian manifolds, a uniform bound on the Ricci curvature tensor allows to control the volume growth along the geodesic flow. Building upon this observation, Lott, Sturm and Villani introduced a synthetic notion of curvature-dimension bounds in the non-smooth setting of metric measure spaces. This condition, called CD(K,N), is formulated in terms of the optimal transport interpolation of measures and consists in a convexity property of the Rényi entropy functionals along Wasserstein geodesics. The CD(K,N) condition represents a lower Ricci curvature bound by K and an upper bound on the dimension by N, and it is coherent with the smooth setting, as in a Riemannian manifold it is equivalent to a lower bound on the Ricci curvature tensor. However, the same relation between curvature and CD(K,N) condition does not hold for sub-Riemannian (and sub-Finsler) manifolds.
Speaker: Rebecca Lewis (Florence Nightingale Bicentenary Fellow, Stats)
Title: High-dimensional statistics
Abstract: Due to the increasing ease with which we collect and store information, modern data sets have grown in size. Whilst these datasets have the potential to yield new insights in a variety of areas, extracting useful information from them can be difficult. In this talk, we will discuss these challenges.
Periodic point clouds naturally arise when modelling large homogenous structures like crystals. They are naturally attributed with a map to a d-dimensional torus given by the quotient of translational symmetries, however there are many surprisingly subtle problems one encounters when studying their (persistent) homology. It turns out that bisheaves are a useful tool to study periodic data sets, as they unify several different approaches to study such spaces. The theory of bisheaves and persistent local systems was recently introduced by MacPherson and Patel as a method to study data with an attributed map to a manifold through the fibres of this map. The theory allows one to study the data locally, while also naturally being able to appeal to local systems of (co)sheaves to study the global behaviour of this data. It is particularly useful, as it permits a persistence theory which generalises the notion of persistent homology. In this talk I will present recent work on the theory and implementation of bisheaves and local systems to study 1-periodic simplicial complexes. Finally, I will outline current work on generalising this theory to study more general periodic systems for d-periodic simplicial complexes for d>1.