Jake Taylor King wins Lee Segel Prize

Oxford Mathematician Jake Taylor King has won the Lee Segel Prize for Best Student Paper for his paper 'From birds to bacteria: Generalised velocity jump processes with resting states.' Jake worked on his research with Professor Jon Chapman. The prize is awarded annually by the Society for Mathematical Biology. One of Jake's co-authors on the paper, Gabs Rosser, previously also studied Mathematics at Oxford in the Wolfson Centre for Mathematical Biology.

Please contact us with feedback and comments about this page. Created on 14 Apr 2016 - 09:39.

Linus Schumacher wins Reinhart Heinrich Doctoral Thesis Award

Oxford Mathematician Linus Schumacher has won the prestigious Reinhart Heinrich Doctoral Thesis Award. The award is presented annually to the student submitting the best doctoral thesis in any area of Mathematical and Theoretical Biology. 

In the judges' view "Linus' thesis is an outstanding example of how mathematical modelling and analysis that is kept close to the experimental system can contribute efficiently to advance the understanding of complex biological questions. The roles of cellular heterogeneity, microenvironmental cues and cell-to-cell interactions, which are common themes in the study of biomedical systems, are skillfully dissected and analysed in relevant experimental model systems, leading to significant advances in the current understanding of said systems."

The judges concluded: "the modelling aims to derive generic, theoretical insights from specific, biological questions. The work has led to a number of excellent publications."

Please contact us with feedback and comments about this page. Created on 13 Apr 2016 - 10:06.

Endre Suli and Xunyu Zhou elected SIAM Fellows

The Society for Industrial and Applied Mathematics (SIAM) has announced that Professors Xunyu Zhou and Endre Suli from Oxford Mathematics are among its newly elected Fellows for 2016.

SIAM exists to ensure the strongest interactions between mathematics and other scientific and technological communities through membership activities, publication of journals and books, and conferences.

Please contact us with feedback and comments about this page. Created on 06 Apr 2016 - 09:09.

D is for Diophantine Equations - the latest in the Oxford Mathematics Alphabet

diophantine equation is an algebraic equation, or system of equations, in several unknowns and with integer (or rational) coefficients, which one seeks to solve in integers (or rational numbers). The study of such equations goes back to antiquity. Their name derives from the mathematician Diophantus of Alexandria, who wrote a treatise on the subject, entitled Arithmetica.

The most famous example of a diophantine equation appears in Fermat’s Last Theorem. This is the statement, asserted by Fermat in 1637 without proof, that the diophantine equation has no solutions in whole numbers when n is at least 3, other than the 'trivial solutions' which arise when XYZ = 0. The study of this equation stimulated many developments in number theory. A proof of the theorem was finally given by Andrew Wiles in 1995.

The basic question one would like to answer is: does a given system of equations have solutions? And if it does have solutions, how can we find or describe them? While the Fermat equation has no (non-trivial) solutions, similar equations (for example ) do have non-trivial solutions. One of the problems on Hilbert’s famous list from 1900 was to give an algorithm to decide whether a given system of diophantine equations has a solution in whole numbers. In effect this is asking whether the solvability can be checked by a computer programme. Work of Martin Davis, Yuri Matiyasevich, Hilary Putnam and Julia Robinson, culminating in 1970, showed that there is no such algorithm. It is still unknown whether the corresponding problem for rational solutions is decidable, even for plane cubic curves. This last problem is connected with one of the Millennium Problems of the Clay Mathematics Institute (with a million dollar prize): the Birch Swinnerton Dyer Conjecture. 

To find out more about diophantine problems read Professor Jonathan Pila's latest addition to our Oxford Mathematics Alphabet.

Please contact us with feedback and comments about this page. Created on 26 Mar 2016 - 09:45.

Andrew Wiles awarded the Abel Prize

The Norwegian Academy of Science and Letters has decided to award the Abel Prize for 2016 to Sir Andrew J. Wiles (62), University of Oxford, “for his stunning proof of Fermat’s Last Theorem by way of the modularity conjecture for semistable elliptic curves, opening a new era in number theory.”

The President of the Norwegian Academy of Science and Letters, Ole M. Sejersted, announced the winner of the 2016 Abel Prize at the Academy in Oslo today, 15 March. Andrew J. Wiles will receive the Abel Prize from H.R.H. Crown Prince Haakon at an award ceremony in Oslo on 24 May.

The Abel Prize recognizes contributions of extraordinary depth and influence to the mathematical sciences and has been awarded annually since 2003. It carries a cash award of NOK 6,000,000 (about EUR 600,000 or USD 700,000).

Andrew J. Wiles is one of very few mathematicians – if not the only one – whose proof of a theorem has made international headline news. In 1994 he cracked Fermat’s Last Theorem, which at the time was the most famous, and long-running, unsolved problem in the subject’s history.

Wiles’ proof was not only the high point of his career – and an epochal moment for mathematics – but also the culmination of a remarkable personal journey that began three decades earlier. In 1963, when he was a ten-year-old boy growing up in Cambridge, England, Wiles found a copy of a book on Fermat’s Last Theorem in his local library. Wiles recalls that he was intrigued by the problem that he as a young boy could understand, and yet it had remained unsolved for three hundred years. “I knew from that moment that I would never let it go,” he said. “I had to solve it.”

The Abel Committee says: “Few results have as rich a mathematical history and as dramatic a proof as Fermat’s Last Theorem.”

Please contact us with feedback and comments about this page. Created on 15 Mar 2016 - 11:26.

The Mirzakhani Society - Oxford Mathematics' society for female undergraduates

27% of mathematics undergraduates in Oxford are female. We would like the figure to be higher and we are putting a lot of resource in to making it so. However, it is also important that current female and non-binary Oxford mathematicians feel they have time and space to discuss and share experiences that may be specific to them.

The Mirzakhani Society is the society for women studying maths at Oxford, named after Maryam Mirzakhanithe first woman to win a Fields Medal (Maryam met the society in September 2015 on her visit to Oxford to collect her Clay Mathematics Institute Research Award).  With over 100 active members, it holds relaxed weekly ‘Sip and Solve’ meetings (aided by high-quality baking), and socials and talks. In a University where your immediate and regular contact is often limited to other members of your college, it is an invaluable way of broadening contacts and providing a support network. The society is open to both undergraduates and postgraduates, and is central in encouraging more women to take a fourth year (undergraduates currently can choose between the three and four year mathematics courses). Find out more about the society on their website.

On Saturday 27 February 2016, the society (pictured) met up with their Cambridge University counterparts, the Emmy Noether Society, sharing experience of gender equality in the universities. Three speakers gave their perspectives: Anne Davis, a Professor of Mathematical Physics and the University Gender Equality Champion for STEMM subjects at Cambridge: Perla Sousi, a Lecturer in the Statistics Laboratory at Cambridge; and Christie Marr, Deputy Director of the Isaac Newton Institute. Thanks to the London Mathematical Society for funding the trip.

Please contact us with feedback and comments about this page. Created on 08 Mar 2016 - 14:27.

C is for Calabi-Yau manifolds - the latest in the Oxford Mathematics Alphabet

Calabi-Yau manifolds have become a topic of study in both mathematics and physics, dissolving the boundaries between the two subjects.

A manifold is a type of geometrical space where each small region looks like normal Euclidean space. For example, an ant on the surface of the Earth sees its world as flat, rather than the curved surface of the sphere. Calabi-Yau manifolds are complex manifolds, that is, they can be disassembled into patches which look like flat complex space. What makes them so special is that these patches can only be joined together by the complex analogue of a rotation.

Proving a conjecture of Eugenio Calabi, Shing-Tung Yau has shown that Calabi-Yau manifolds have a property which is very interesting to physics. Einstein's equations show that spacetime curves according to the distribution of energy and momentum. But what if space is all empty? By Yau's theorem, not only is flat space a solution but so are Calabi-Yau manifolds. Furthermore, for this reason, Calabi-Yau spaces are possible candidates for the shape of extra spatial dimensions in String Theory.

Find out more from Oxford Mathematician Dr Andreas Braun in this latest instalment of our Oxford Mathematics Alphabet.

 

Please contact us with feedback and comments about this page. Created on 23 Feb 2016 - 09:32.

Hitchin70 - a celebration of one of Oxford's most influential mathematicians

In celebration of Nigel Hitchin's 70th birthday and in honour of his contributions to mathematics, a group of his former students and his colleague Frances Kirwan, in partnership with the Clay Mathematics Institute, are organising a conference in September 2016. It will begin in Aarhus with a workshop on differential geometry and quantization and end in Madrid with a workshop on Higgs bundles and generalized geometry, with a meeting in Oxford in between aimed at a general audience of geometers.

The three components of the conference are:

Hitchin70: Differential Geometry and Quantization, QGM, Aarhus, 5-8 Sept. 2016

Hitchin70: Mathematical Institute, Oxford, 9-11 Sept. 2016

Hitchin70: Celebrating 30 years of Higgs bundles and 15 years of generalized geometry, Residencia la Cristalera, Miraflores de la Sierra (Madrid), 12-16 Sept. 2016

More information, including registration, can be found at http://projects.au.dk/hitchin70/

The confirmed speakers at the Oxford component of Hitchin70, which is supported by the London Mathematical Society are:

Sasha Beilinson
Fedor Bogomolov
Philip Candelas
Bill Goldman
Klaus Hulek
Maxim Kontsevich
Marta Mazzoco
Shigefumi Mori
Shing-Tung Yau

A poster can be downloaded here

Nigel Hitchin is one of the most influential figures in the field of differential and algebraic geometry and its relations with the equations of mathematical physics. He has made fundamental contributions, opening entire new areas of research in fields as varied as spin geometry, instanton and monopole equations, twistor theory, symplectic geometry of moduli spaces, integrables systems, Higgs bundles, Einstein metrics, hyperkähler geometry, Frobenius manifolds, Painlevé equations, special Lagrangian geometry and mirror symmetry, generalized geometry and beyond. He is the Savilian Professor of Geometry at University of Oxford and was previously the Rouse Ball Professor of Mathematics at Cambridge University. He is a Fellow of the Royal Society and has been the President of the London Mathematical Society.

Please contact us with feedback and comments about this page. Created on 15 Feb 2016 - 09:33.

Mathematicians of tomorrow

Six Oxford Mathematics Undergraduates presented papers at the fifth Undergraduate Mathematics Conference on Saturday 13th February 2016 at the University of Greenwich.
 
Matjaz Leonardis on Group Theory, Henrique Rui Neves Aguiar on why the Antarctic is so big, Yiliu Wang on Probability, Joe Pollard on Quantum Chaos, Cameron Whitehead on D-modules and Chan Bae on Embedding Graphs demonstrated the range of work going on at undergraduate level. Chan Bae won the GCHQ prize for the best presentation. Matjaz Leonardis was also shortlisted.
 
This year's event is organised and hosted by the University of Greenwich together with the Institute of Mathematics and its Applications (IMA).
 
 
Please contact us with feedback and comments about this page. Created on 26 Jan 2016 - 10:53.

The Mathematics of Christmas - Marcus du Sautoy Christmas Lecture now online

Christmas is the time of year when you really need solutions. Presents to buy, who to invite to parties, who to talk to at parties. And of course the biggest dilemma is for Santa himself, traversing the globe in the early hours. So much to do, so little time.

So what you need is something to make Christmas a little easier. And what better than mathematics? Because mathematics can answer all your questions, from best party configurations, to the optimum number of presents to mapping Santa's quickest route.

Or can it? Perhaps there are some things that even mathematics cannot answer.

In the Oxford Mathematics Annual Christmas Lecture Marcus du Sautoy explores the mathematics of the festive season.

The Oxford Mathematics Christmas Lecture is generously sponsored by G-Research - Researching investment ideas to predict financial markets.

 
Please contact us with feedback and comments about this page. Created on 17 Dec 2015 - 10:19.