Wed, 04 Feb 2026

16:00 - 17:00
L6

Some Computational 4-Manifold Topology

Rhuaidi Burke
(University of Oxford )
Abstract

Dimension 4 is the first dimension in which exotic smooth manifold pairs appear — manifolds which are topologically the same but for which there is no smooth deformation of one into the other. On the other hand, smooth and PL manifolds (manifolds which can be described discretely) do coincide in dimension 4. Despite this, there has been comparatively little work done towards gaining an understanding of smooth 4-manifolds from the discrete and algorithmic perspective. The aim of this talk will be to give a gentle introduction to some of the tools, techniques, and ideas, which inform a computational approach to 4-manifold topology.

Uniform density in matroids, matrices and graphs
Devriendt, K Mulas, R Australasian Journal of Combinatorics
Mon, 02 Feb 2026
16:00
C5

The Sárközy problem in function fields

Aleksandra Kowalska
(University of Oxford)
Abstract

In the talk, I'll first describe a more general context of Sárközy-type problems and interesting directions in which they can be pursued. Then, I'll focus on the specific case of bounding the size of sets A s. t. A - A + 1 contains no prime. After describing the progress on the problem for integers, I'll pass on to considering an analogous question for function fields and (after a general introduction to function fields) I'll speak about my recent result in this area.

Gesine Reinert’s contribution to the Discussion of ‘Statistical exploration of the Manifold Hypothesis’ by Whiteley et al’
Reinert, G Journal of the Royal Statistical Society Series B Statistical Methodology qkag008 (20 Jan 2026)
Tue, 03 Feb 2026

14:00 - 15:00
L4

Cycle-factors of regular graphs via entropy

Lukas Michel
(University of Oxford)
Abstract

It is a classical result that a random permutation of $n$ elements has, on average, about $\log n$ cycles. We generalise this fact to all directed $d$-regular graphs on $n$ vertices by showing that, on average, a random cycle-factor of such a graph has $\mathcal{O}((n\log d)/d)$ cycles. This is tight up to the constant factor and improves the best previous bound of the form $\mathcal{O}({n/\sqrt{\log d}})$ due to Vishnoi. It also yields randomised polynomial-time algorithms for finding such a cycle-factor and for finding a tour of length $(1+\mathcal{O}((\log d)/d)) \cdot n$ if the graph is connected. The latter result makes progress on a restriction of the Traveling Salesman Problem to regular graphs, a problem studied by Vishnoi and by Feige, Ravi, and Singh. Our proof uses the language of entropy to exploit the fact that the upper and lower bounds on the number of perfect matchings in regular bipartite graphs are extremely close.

This talk is based on joint work with Micha Christoph, Nemanja Draganić, António Girão, Eoin Hurley, and Alp Müyesser.

Wed, 04 Feb 2026
12:45
TCC VC

Cluster Algebras and Their Applications

Adam Kmec
Abstract

First introduced by Fomin and Zelevinsky, cluster algebras are commutative rings that have many combinatorial properties. They have had many applications to both mathematics and physics. In this talk, I will first introduce cluster algebras and explore some of their properties. I will then move on to their applications, starting with dilogarithm identities and then moving to integrable systems and the thermodynamic Bethe ansatz (TBA). Time permitting, I will connect some of these ideas to the ODE/IM correspondence. 

Quantum snakes on a plane: Mobile, low dimensional logical qubits on a 2D surface
Anonymous PRX Quantum (17 Dec 2025)

'Thorough preparation, engaging delivery, active learning, supported by clear, visual-aided, well-structured content.'

But enough of Google AI. For a good student lecture, how about the human touch?

Subscribe to