Wed, 11 Feb 2026
15:00

The distribution of zeroes of  modular forms 

Zeev Rudnick
Further Information

Joint seminar with Number Theory.

Abstract

I will discuss old and new results about the distribution of zeros of modular forms, and relation to Quantum Unique Ergodicity. It is known that a modular form of weight k has about k/12 zeros in the fundamental domain . A classical question in the analytic theory of modular forms is “can we locate the zeros of a distinguished family of modular forms?”. In 1970, F. Rankin and Swinnerton-Dyer proved that the zeros of the Eisenstein series all lie on the circular part of the boundary of the fundamental domain. In the beginning of this century, I discovered that for cuspidal Hecke eigenforms, the picture is very different - the zeros are not localized, and in fact become uniformly distributed in the fundamental domain. Very recently, we have investigated other families of modular forms, such as the Miller basis (ZR 2024, Roei Raveh 2025, Adi Zilka 2026), Poincare series (RA Rankin 1982, Noam Kimmel 2025) and theta functions (Roei Raveh 2026),  finding a variety of possible distributions of the zeroes.

Tue, 10 Mar 2026
14:00
C3

TBA

Márton Pósfai
(Central European University)
Tue, 03 Mar 2026
14:00
C3

TBA

Bridget Smart
((Mathematical Institute University of Oxford))
Tue, 27 Jan 2026
14:00
C3

Social Interactions in Chimpanzees

Gesine Reinert
(Department of Statistics, University of Oxford)
Abstract
This work is based on 30 years of behavioural observations of the largest-known group of wild chimpanzees. The data includes 10 different proximity and interaction levels between chimpanzees.  There is an abrupt transition from cohesion to polarization in 2015 and the emergence of two distinct groups by 2018.
First we combine the data into a time series of a single weighted network per time stamps. Then we identify groups of individuals that stay related for a significant length of time. We detect cliques in the animal social network time series which match qualitative observations by chimpanzee experts.  Finally we introduce a simple  model to explain the split.
 
This is based on joint work with Mihai Cucuringu, Yixuan He, John Mitani, Aaron Sandel, and David Wipf.  
Tue, 03 Mar 2026
16:00
L6, Mathematical Institute

TBA (Tuesday)

Steve Lester
(King's College London)
Abstract

(Joint seminar with Random Matrix Theory)

Subscribe to