Exchangeable arrays and integrable systems for characteristic polynomials of random matrices
Keating, J Assiotis, T Gunes, M Wei, F Communications on Pure and Applied Mathematics
Mon, 26 Jan 2026
16:00
C5

Phenomenon of l-independence

Suvir Rathore
(Cambridge University)
Abstract
Abstract: In number theory, one often studies compatible systems of l-adic representations of geometric origin where l is a prime number. The proof of the Weil conjectures (in particular the Riemann hypothesis) show the the l-adic cohomology of a variety over a finite field is independent of l in some sense.
 
After proving the Weil conjectures, Deligne offered some more general conjectures, which hint at deeper l-independence statements as predicted by Grothendieck's vision of a theory of motives. One key input in proving this conjecture is the Langland's correspondence.
 
We will introduce this phenomenon guided by the conjectural theory of motives through the lens of a universal cohomology theory, and explain how one uses the Langlands correspondence.
Tue, 27 Jan 2026

14:00 - 15:00
L4

Exploring temporal graphs

Paul Bastide
(University of Oxford)
Abstract

A temporal graph $G$ is a sequence of graphs $G_1, G_2, \ldots, G_t$ on the same vertex set. In this talk, we are interested in the analogue of the Travelling Salesman Problem for temporal graphs. It is referred to in the literature as the Temporal Exploration Problem, and asks for the minimum length of an exploration of the graph, that is, a sequence of vertices such that at each time step $t$, one either stays at the same vertex or moves along a single edge of $G_t$.

One natural and still open case is when each graph $G_t$ is connected and has bounded maximum degree. We present a short proof that any such graph admits an exploration in $O(n^{3/2}\sqrt{\log n})$ time steps. In fact, we deduce this result from a more general statement by introducing the notion of average temporal maximum degree. This more general statement improves the previous best bounds, under a unified approach, for several studied exploration problems.

This is based on joint work with Carla Groenland, Lukas Michel and Clément Rambaud.

SANOS: Smooth strictly Arbitrage-free Non-parametric Option Surfaces
Saqur, R (19 Jan 2026)
Mon, 02 Mar 2026

11:00 - 13:00
L3

The geometric control of boundary-catalytic branching processes

Denis Grebenkov
(Ecole Polytechnique)
Abstract

In the first part of the talk, I will present an overview of recent advances in the description of diffusion-reaction processes and their first-passage statistics, with the special emphasis on the role of the boundary local time and related spectral tools. The second part of the talk will illustrate the use of these tools for the analysis of boundary-catalytic branching processes. These processes describe a broad class of natural phenomena where the population of diffusing particles grows due to their spontaneous binary branching (e.g., division, fission, or splitting) on a catalytic boundary located in a complex environment. We investigate the possibility of the geometric control of the population growth by compensating the proliferation of particles due to catalytic branching events by their absorptions in the bulk or on boundary absorbing regions. We identify an appropriate Steklov spectral problem to obtain the phase diagram of this out-of-equilibrium stochastic process. The principal eigenvalue determines the critical line that separates an exponential growth of the population from its extinction. In other words, we establish a powerful tool for calculating the optimal absorption rate that equilibrates the opposite effects of branching and absorption events and thus results in steady-state behavior of this diffusion-reaction system. Moreover, we show the existence of a critical catalytic rate above which no compensation is possible, so that the population cannot be controlled and keeps growing exponentially. The proposed framework opens promising perspectives for better understanding, modeling, and control of various boundary-catalytic branching processes, with applications in physics, chemistry, and life sciences.

The Paid Teacher Internship Programme 2026 is a scheme that the Cherwell School in North Oxford run with Department for Education funding that is open to anybody that is a current university student (except for first year undergraduates) in Maths and related subject areas and are interested in getting some experience teaching and finding out more about what it is like to be a teacher.

What do you, as an Oxford University Mathematics student, do in your spare time?

Well, much the same as everyone else. Music, gym, bit of yoga, organising events, impersonating farmyard animals.

Minimum degree conditions for graph rigidity
Krivelevich, M Lew, A Michaeli, P Bulletin of the London Mathematical Society volume 58 issue 1 (21 Jan 2026)
Subscribe to