Thu, 11 Jun 2026
14:00 -
15:00
Lecture Room 3
The Dean–Kawasaki equation provides a stochastic partial differential equation description of interacting particle systems at the level of empirical densities and has attracted considerable interest in statistical physics, stochastic analysis, and applied modeling. In this work, we study analytical and numerical aspects of the Dean–Kawasaki equation, with a particular focus on well-posedness, structure preservation, and possible discretization strategies. In addition, we extend the framework to the Dean–Kawasaki equation posed on smooth hypersurfaces. We discuss applications of the Dean–Kawasaki framework to particle-based models arising in biological systems and modeling social dynamics.