Oxford Mathematician Endre Süli's work is concerned with the analysis of numerical algorithms for the approximate solution of partial differential equations and the mathematical analysis of nonlinear partial differential equations in continuum mechanics.
Neural Controlled Differential Equations for Online Prediction Tasks
Abstract
Neural controlled differential equations (Neural CDEs) are a continuous-time extension of recurrent neural networks (RNNs). They are considered SOTA for modelling functions on irregular time series, outperforming other ODE benchmarks (ODE-RNN, GRU-ODE-Bayes) in offline prediction tasks. However, current implementations are not suitable to be used in online prediction tasks, severely restricting the domains of applicability of this powerful modeling framework. We identify such limitations with previous implementations and show how said limitations may be addressed, most notably to allow for online predictions. We benchmark our online Neural CDE model on three continuous monitoring tasks from the MIMIC-IV ICU database, demonstrating improved performance on two of the three tasks against state-of-the-art (SOTA) non-ODE benchmarks, and improved performance on all tasks against our ODE benchmark.
Joint work with Patrick Kidger, Lingyi Yang, and Terry Lyons.
FFTA: Modularity maximisation for graphons
Abstract
Networks are a widely-used tool to investigate the large-scale connectivity structure in complex systems and graphons have been proposed as an infinite size limit of dense networks. The detection of communities or other meso-scale structures is a prominent topic in network science as it allows the identification of functional building blocks in complex systems. When such building blocks may be present in graphons is an open question. In this paper, we define a graphon-modularity and demonstrate that it can be maximised to detect communities in graphons. We then investigate specific synthetic graphons and show that they may show a wide range of different community structures. We also reformulate the graphon-modularity maximisation as a continuous optimisation problem and so prove the optimal community structure or lack thereof for some graphons, something that is usually not possible for networks. Furthermore, we demonstrate that estimating a graphon from network data as an intermediate step can improve the detection of communities, in comparison with exclusively maximising the modularity of the network. While the choice of graphon-estimator may strongly influence the accord between the community structure of a network and its estimated graphon, we find that there is a substantial overlap if an appropriate estimator is used. Our study demonstrates that community detection for graphons is possible and may serve as a privacy-preserving way to cluster network data.
arXiv link: https://arxiv.org/abs/2101.00503