Dynamics and Global Bifurcations in Two Symmetrically Coupled Non-Invertible Maps
Soula, Y Jahanshahi, H Al-Barakati, A Moroz, I Mathematics volume 11 issue 6 (01 Mar 2023)

You may have noticed additions to the exhibition this week plus a relocation. I'll leave you to find them (hint in the photo). A trip to the North Wing for southerners and a trip to the extremities of the South for northerners might also help.

Pure pairs. X. Tournaments and the strong Erdos-Hajnal property
Chudnovsky, M Scott, A Seymour, P Spirkl, S European Journal of Combinatorics volume 115 (06 Aug 2023)
Thu, 19 Oct 2023

14:00 - 15:00
Lecture Room 3

Randomized Least Squares Optimization and its Incredible Utility for Large-Scale Tensor Decomposition

Tammy Kolda
(mathsci.ai)
Abstract

Randomized least squares is a promising method but not yet widely used in practice. We show an example of its use for finding low-rank canonical polyadic (CP) tensor decompositions for large sparse tensors. This involves solving a sequence of overdetermined least problems with special (Khatri-Rao product) structure.

In this work, we present an application of randomized algorithms to fitting the CP decomposition of sparse tensors, solving a significantly smaller sampled least squares problem at each iteration with probabilistic guarantees on the approximation errors. We perform sketching through leverage score sampling, crucially relying on the fact that the problem structure enable efficient sampling from overestimates of the leverage scores with much less work. We discuss what it took to make the algorithm practical, including general-purpose improvements.

Numerical results on real-world large-scale tensors show the method is faster than competing methods without sacrificing accuracy.

*This is joint work with Brett Larsen, Stanford University.

Thu, 12 Oct 2023

14:00 - 15:00
Lecture Room 3

Hermitian preconditioning for a class of non-Hermitian linear systems

Nicole Spillane
(Ecole Polytechnique (CMAP))
Abstract

This work considers weighted and preconditioned GMRES. The objective is to provide a way of choosing the preconditioner and the inner product, also called weight, that ensure fast convergence. The main focus of the article is on Hermitian preconditioning (even for non-Hermitian problems).

It is indeed proposed to choose a Hermitian preconditioner H, and to apply GMRES in the inner product induced by H. If moreover, the problem matrix A is positive definite, then a new convergence bound is proved that depends only on how well H preconditions the Hermitian part of A, and on a measure of how non-Hermitian A is. In particular, if a scalable preconditioner is known for the Hermitian part of A, then the proposed method is also scalable. I will also illustrate this result numerically.

Subscribe to