Mon, 16 Jun 2014

15:45 - 16:45
Oxford-Man Institute

Efficient PDE methods for multivariate option pricing

OLEG REICHMANN
(ETH Zurich)
Abstract

We consider the numerical approximation of Kolmogorov equations arising in the context of option pricing under L\'evy models and beyond in a multivariate setting. The existence and uniqueness of variational solutions of the partial integro-differential equations (PIDEs) is established in Sobolev spaces of fractional or variable order.

Most discretization methods for the considered multivariate models suffer from the curse of dimension which impedes an efficient solution of the arising systems. We tackle this problem by the use of sparse discretization methods such as classical sparse grids or tensor train techniques. Numerical examples in multiple space dimensions confirm the efficiency of the described methods.

Tue, 04 Mar 2014

15:45 - 16:45
L4

Factorization homology is a fully extended TFT

Damien Calaque
(ETH Zurich)
Abstract

We will start with a recollection on factorization algebras and factorization homology. We will then explain what fully extended TFTs are, after Jacob Lurie. And finally we will see how factorization homology can be turned into a fully extended TFT. This is a joint work with my student Claudia Scheimbauer.

Tue, 04 Mar 2014

14:00 - 15:00
L4

Lagrangian structures on derived mapping stacks

Damien Calaque
(ETH Zurich)
Abstract

We will explain how the result of Pantev-Toën-Vaquié-Vezzosi, about shifted symplectic structures on mapping stacks, can be extended to relative mapping stacks and Lagrangian structures. We will also provide applications in ordinary symplectic geometry and topological field theories.

Tue, 19 Nov 2013

14:00 - 15:00
L4

Orderability and the Weinstein Conjecture

Will Merry
(ETH Zurich)
Abstract

In 2000 Eliashberg-Polterovich introduced the natural notion of orderability of contact manifolds; that is, the existence of a natural partial order on the group of contactomorphisms. I will explain how one can study orderability questions using the machinery of Rabinowitz Floer homology. We establish a link between orderable and hypertight contact manifolds, and show that the Weinstein Conjecture holds (i.e. there exists a closed Reeb orbit) whenever there exists a positive (not necessarily contractible) loop of contactomorphisms.

Joint work with Peter Albers and Urs Fuchs.

Tue, 19 Nov 2013

15:45 - 16:45
L4

RFH=FH

Will Merry
(ETH Zurich)
Abstract

Rabinowitz Floer homology (RFH) is the Floer theory associated to the Rabinowitz action functional. One can think of this functional as a Lagrange multiplier functional of the unperturbed action functional of classical mechanics. Its critical points are closed orbits of arbitrary period but with fixed energy.

This fixed energy problem can be transformed into a fixed period problem on an enlarged phase space. This provides a way to see RFH as a "standard" Hamiltonian Floer theory, and allows one to treat RFH on an equal footing to other related Floer theories. In this talk we explain how this is done and discuss several applications.

Joint work with Alberto Abbondandolo and Alexandru Oancea.

Fri, 26 Apr 2013

16:00 - 17:00
L1

Robust Hedging, price intervals and optimal transport

Mete Soner
(ETH Zurich)
Abstract

The original transport problem is to optimally move a pile of soil to an excavation.

Mathematically, given two measures of equal mass, we look for an optimal bijection that takes

one measure to the other one and also minimizes a given cost functional. Kantorovich relaxed

this problem by considering a measure whose marginals agree with given two measures instead of

a bijection. This generalization linearizes the problem. Hence, allows for an easy existence

result and enables one to identify its convex dual.

In robust hedging problems, we are also given two measures. Namely, the initial and the final

distributions of a stock process. We then construct an optimal connection. In general, however,

the cost functional depends on the whole path of this connection and not simply on the final value.

Hence, one needs to consider processes instead of simply the maps S. The probability distribution

of this process has prescribed marginals at final and initial times. Thus, it is in direct analogy

with the Kantorovich measure. But, financial considerations restrict the process to be a martingale

Interestingly, the dual also has a financial interpretation as a robust hedging (super-replication)

problem.

In this talk, we prove an analogue of Kantorovich duality: the minimal super-replication cost in

the robust setting is given as the supremum of the expectations of the contingent claim over all

martingale measures with a given marginal at the maturity.

This is joint work with Yan Dolinsky of Hebrew University.

Thu, 24 Jan 2013

14:00 - 15:00
Gibson Grd floor SR

A hybrid finite element-Lagrangian marker technique for geodynamics: Spatial discretisations, implicit solvers and numerics

Dr David May
(ETH Zurich)
Abstract

Over million year time scales, the evolution and deformation of rocks on Earth can be described by the equations governing the motion of a very viscous, incompressible fluid. In this regime, the rocks within the crust and mantle lithosphere exhibit both brittle and ductile behaviour. Collectively, these rheologies result in an effective viscosity which is non-linear and may exhibit extremely large variations in space. In the context of geodynamics applications, we are interested in studying large deformation processes both prior and post to the onset of material failure.

\\

\\

Here I introduce a hybrid finite element (FE) - Lagrangian marker discretisation which has been specifically designed to enable the numerical simulation of geodynamic processes. In this approach, a mixed FE formulation is used to discretise the incompressible Stokes equations, whilst the markers are used to discretise the material lithology.

\\

\\

First I will show the a priori error estimates associated with this hybrid discretisation and demonstrate the convergence characteristics via several numerical examples. Then I will discuss several multi-level preconditioning strategies for the saddle point problem which are robust with respect to both large variations in viscosity and the underlying topological structure of the viscosity field.

\\

Finally, I will describe an extension of the multi-level preconditioning strategy that enables high-resolution, three-dimensional simulations to be performed with a small memory footprint and which is performant on multi-core, parallel architectures.

Mon, 12 Nov 2012

17:00 - 18:00
Gibson 1st Floor SR

Crystalline solids with a uniform distribution of dislocations

Ivo Kaelin (with D. Christodoulou)
(ETH Zurich)
Abstract

Crystalline solids are descibed by a material manifold endowed

with a certain structure which we call crystalline. This is characterized by

a canonical 1-form, the integral of which on a closed curve in the material manifold

represents, in the continuum limit, the sum of the Burgers vectors of all the dislocation lines

enclosed by the curve. In the case that the dislocation distribution is uniform, the material manifold

becomes a Lie group upon the choice of an identity element. In this talk crystalline solids

with uniform distributions of the two elementary kinds of dislocations, edge and screw dislocations,

shall be considered. These correspond to the two simplest non-Abelian Lie groups, the affine group

and the Heisenberg group respectively. The statics of a crystalline solid are described in terms of a

mapping from the material domain into Euclidean space. The equilibrium configurations correspond

to mappings which minimize a certain energy integral. The static problem is solved in the case of

a small density of dislocations.

Fri, 18 May 2012

14:15 - 15:00
DH 1st floor SR

Absence of arbitrage and changes of measure

Prof Martin Schweizer
(ETH Zurich)
Abstract

Absence of arbitrage is a highly desirable feature in mathematical models of financial markets. In its pure form (whether as NFLVR or as the existence of a variant of an equivalent martingale measure R), it is qualitative and therefore robust towards equivalent changes of the underlying reference probability (the "real-world" measure P). But what happens if we look at more quantitative versions of absence of arbitrage, where we impose for instance some integrability on the density dR/dP? To which extent is such a property robust towards changes of P? We discuss these uestions and present some recent results.

The talk is based on joint work with Tahir Choulli (University of Alberta, Edmonton).

Subscribe to ETH Zurich