Mon, 08 May 2023
13:00
L1

Star-shaped quivers in four dimensions

Shlomo Razamat
(Technion)
Abstract
We will review the notion of across dimension IR dualities. As a concrete example we will  discuss such 4d across dimensions dual Lagrangian descriptions of compactifications of the 6d  minimal D type conformal matter theory on a sphere with arbitrary number of punctures. The Lagrangian has the form of a ``star shaped quiver'' with the rank of the central node depending on the 6d theory and the number and type of punctures. Using these Lagrangians one can construct across dimensions duals for arbitrary compactifications (any genus and type of punctures) of the D type conformal matter.

 

Fri, 04 Jun 2021
16:00

CANCELLED. A gravity interpretation for the Bethe Ansatz expansion of the N = 4 SYM index

Paolo Milan
(Technion)
Abstract

In this talk I will present a gravitational interpretation for the superconformal index of N = 4 SYM theory in the large N limit. I will start by reviewing the so-called Bethe Ansatz formulation of the field theory index and its large N expansion (which includes both perturbative and non-perturbative corrections in 1/N). In the gravity side, according the rules of AdS/CFT correspondence, the index—interpreted as the supersymmetric partition function of N = 4 SYM—should be equivalent to the gravitational partition function on AdS_5 x S^5. The latter is classically evaluated as a sum over Euclidean gravity solutions with appropriate boundary conditions. In this context, I will show that (in the case of equal angular momenta) the contribution to the index of each Bethe Ansatz solution that admits a proper large N limit is captured by a complex black hole solution in the gravity side, which reproduces both its perturbative and non-perturbative behavior. More specifically, the number of putative black hole solutions turns out to be much larger than the number of Bethe Ansatz solutions. A resolution of this issue is found by requiring the gravity solutions to be “stable” under the non-perturbative corrections. This ensures that all the extra gravity solutions are ruled out and leads to a precise match between field theory and gravity.

Tue, 17 Nov 2020
15:30
Virtual

Random Steiner complexes and simplical spanning trees

Ron Rosenthal
(Technion)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

A spanning tree of $G$ is a subgraph of $G$ with the same vertex set as $G$ that is a tree. In 1981, McKay proved an asymptotic result regarding the number of spanning trees in random $k$-regular graphs, showing that the number of spanning trees $\kappa_1(G_n)$ in a random $k$-regular graph on $n$ vertices satisfies $\lim_{n \to \infty} (\kappa_1(G_n))^{1/n} = c_{1,k}$ in probability, where $c_{1,k} = (k-1)^{k-1} (k^2-2k)^{-(k-2)/2}$.

In this talk we will discuss a high-dimensional of the matching model for simplicial complexes, known as random Steiner complexes. In particular, we will prove a high-dimensional counterpart of McKay's result and discuss the local limit of such random complexes. 
Based on a joint work with Lior Tenenbaum. 

Mon, 15 Jun 2020
12:45
Virtual

SQCD and pairs of pants --- ZOOM SEMINAR

Shlomo Razamat
(Technion)
Abstract

We will show that minimally supersymmetric SU(N+2) SQCD models in the middle of the conformal window can be engineered by compactifying certain 6d SCFTs on three punctured spheres. The geometric construction of the 4d theories predicts numerous interesting strong coupling effects, such as IR symmetry enhancements and duality. We will discuss this interplay between simple geometric and group theoretic considerations and complicated field theoretic strong coupling phenomena. For example, one of the dualities arising geometrically from different pair-of-pants decompositions of a four punctured sphere  is an $SU(N+2)$ generalization of the Intriligator-Pouliot duality of $SU(2)$ SQCD with $N_f=4$, which is a degenerate, $N=0$, instance of our discussion. 

Thu, 10 May 2018

16:00 - 17:30
L2

Flows about superhydrophobic surfaces

Ehud Yariv
(Technion)
Abstract

Superhydrophobic surfaces, formed by air entrapment within the cavities of a hydrophobic solid substrate, offer a promising potential for drag reduction in small-scale flows. It turns out that low-drag configurations are associated with singular limits, which to date have typically been addressed using numerical schemes. I will discuss the application of singular perturbations to several of the canonical problems in the field. 


 

Tue, 21 Oct 2008
14:30
L3

Domination numbers, homology and hypergraph matching

Roy Meshulam
(Technion)
Abstract

The homological Hall lemma is a topological tool that has recently been used to derive Hall type theorems for systems of disjoint representatives in hypergraphs.

After outlining the general method, we.ll describe one such theorem in some detail. The main ingredients in the proof are:

1) A relation between the spectral gap of a graph and the topological connectivity of its flag complex.

2) A new graph domination parameter defined via certain vector representations of the graph.

Joint work with R. Aharoni and E. Berger

Subscribe to Technion