Fri, 05 May 2023

14:00 - 15:00
L4

MHD instability associated with critical layers

Chen Wang
(University of Exeter)
Abstract

Critical levels appear as singularities of waves propagating in shear flows. When magnetic field exists, critical levels are located where the phase velocity of the wave relative to the basic flow matches the velocity of Alfvén waves. Critical levels are known for locally strong wave amplitude in its vicinity, known as the critical layers. In this talk, I will demonstrate the situation where magnetic critical layers can contribute to the instability of the MHD flow.  We consider two different flow configurations. One is the shallow water flow, and the other is the 2D flow on a sphere. Asymptotic analysis has been used to explore deeper insights of the instability mechanism.

Thu, 25 Nov 2021
14:00
Virtual

Adaptive multilevel delayed acceptance

Tim Dodwell
(University of Exeter)
Abstract

Uncertainty Quantification through Markov Chain Monte Carlo (MCMC) can be prohibitively expensive for target probability densities with expensive likelihood functions, for instance when the evaluation it involves solving a Partial Differential Equation (PDE), as is the case in a wide range of engineering applications. Multilevel Delayed Acceptance (MLDA) with an Adaptive Error Model (AEM) is a novel approach, which alleviates this problem by exploiting a hierarchy of models, with increasing complexity and cost, and correcting the inexpensive models on-the-fly. The method has been integrated within the open-source probabilistic programming package PyMC3 and is available in the latest development version.

In this talk I will talk about the problems with the Multilevel Markov Chain Monte Carlo (Dodwell et al. 2015). In so we will prove detailed balance for Adaptive Multilevel Delayed Acceptance, as well as showing that multilevel variance reduction can be achieved without bias, not possible in the original MLMCMC framework.

I will talk about our implementation in the latest version of pymc3, and demonstrate how for classical inverse problem benchmarks the AMLDA sampler offers huge computational savings (> factor of 100 fold speed up).

Finally I will talk heuristically about new / future research, in which we seek to develop parallel strategies for this inherently sequential sampler, as well as point to interesting applied application areas in which the method is proving particular effective.

 

--

This talk will be in person.

Thu, 06 Jun 2019

16:00 - 17:00
L6

A non-abelian algebraic criterion for good reduction of curves

Valentina DiProietto
(University of Exeter)
Abstract


For a family of proper hyperbolic complex curves $f: X \longrightarrow \Delta^*$ over a puntured disc $\Delta^*$ with semistable reduction at the center, Oda proved, with transcendental methods, that the outer monodromy action of $\pi_1(\Delta^*) \cong \mathbb{Z}$ on the classical unipotent fundamental group of the generic fiber of $f$ is trivial if and only if $f$ has good reduction at the center. In this talk I explain a joint work with B. Chiarellotto and A. Shiho in which we give a purely algebraic proof of Oda's result.

Tue, 27 Nov 2018

12:00 - 13:00
C4

Crime Concentration and Crime Dynamics in Urban Environments

Ronaldo Menezes
(University of Exeter)
Abstract

Crime is a major risk to society’s well-being, particularly in cities, and yet the scientific literature lacks a comprehensive statistical characterization of crime that could uncover some of the mechanisms behind such pervasive social phenomenon. Evidence of nonlinear scaling of urban indicators in cities, such as wages and serious crime, has motivated the understanding of cities as complex systems—a perspective that offers insights into resources limits and sustainability, but usually without examining the details of indicators. Notably, since the nineteenth century, criminal activities have been known not to occur uniformly within a city. Crime concentrates in such way that most of the offenses take place in few regions of the city. However, though this concentration is confirmed by different studies, the absence of broad examinations of the characteristics of crime concentration hinders not only the comprehension of crime dynamics but also the proposal of sounding counter-measures. Here, we developed a framework to characterize crime concentration which splits cities into regions with the same population size. We used disaggregated criminal data from 25 locations in the U.S. and the U.K. which include offenses in places spanning from 2 to 15 years of data. Our results confirmed that crime concentrates regardless of city and revealed that the level of concentration does not scale with city size. We found that distribution of crime in a city can be approximated by a power-law distribution with exponent α that depends on the type of crime. In particular, our results showed that thefts tend to concentrate more than robberies, and robberies more than burglaries. Though criminal activities present regularities of concentration, we found that criminal ranks have the tendency to change continuously over time. Such features support the perspective of crime as a complex system which demands analyses and evolving urban policies covering the city as a whole. 

 

Fri, 03 Mar 2017

11:00 - 12:00
C3

p-adic deformation of motivic Chow groups

Andreas Langer
(University of Exeter)
Abstract

For a smooth projective scheme Y over W(k) we consider an element in the motivic Chow group of the reduction Y_m over the truncated Witt ring W_m(k) and give a "Hodge" criterion - using the crystalline cycle class in relative crystalline cohomology - for the element to the lift to the continuous Chow group of Y. The result extends previous work of Bloch-Esnault-Kerz on the p-adic variational Hodge conjecture to a relative setting. In the course of the proof we derive two new results on the relative de Rham-Witt complex and its Nygaard filtration, and work with relative syntomic complexes to define relative motivic complexes for a smooth, formal lifting of Y_m over W(W_m(k)).

Mon, 30 Nov 2015

15:00 - 16:00
Oxford-Man Institute

Higher order theory for renewal sequences with infinite mean.

DALIA TERHESIU
(University of Exeter)
Abstract

Abstract: First order asymptotic of scalar renewal sequences with infinite mean characterized by regular variation has been classified in the 60's (Garsia and Lamperti). In the recent years, the question of higher order asymptotic for renewal sequences with infinite mean was motivated by obtaining 'mixing rates' for dynamical systems with infinite measure. In this talk I will present the recent results we have obtained on higher order asymptotic for renewal sequences with infinite mean and their consequences for error rates in certain limit theorems (such as arcsine law for null recurrent Markov processes).

Fri, 08 May 2015

14:15 - 15:15
C1

Probing the Jovian Interior via its Gravitational Field: Mathematical Theory and Applications

Keke Zhang
(University of Exeter)
Abstract
Alternating, fast cloud level zonal winds on Jupiter have been accurately measured for several decades but their depth of penetration into the Jovian interior, which is closely associated with the origin of the winds, still remains highly controversial. The Juno spacecraft, now on its way to Jupiter and will arrive there in 2016, will probe the depth of penetration of the zonal winds by accurately measuring their effects on the high-order zonal gravitational coefficients at unprecedentedly high precision. Interpretation of these gravitational measurements requires an accurate description of the shape, density structure and internal wind profile. We shall discuss the mathematical theory and accurate numerical simulation for the gravitational field of rapidly rotating, non-spherical gaseous Jupiter.
Fri, 24 Oct 2014

14:15 - 15:15
C1

The influence of fast waves and fluctuations on the evolution of slow solutions of the Boussinesq equations

Beth Wingate
(University of Exeter)
Abstract

We will present results from studies of the impact of the non-slow (typically fast) components of a rotating, stratified flow on its slow dynamics. We work in the framework of fast singular limits that derives from the work of Bogoliubov and Mitropolsky [1961], Klainerman and Majda [1981], Shochet [1994], Embid and Ma- jda [1996] and others.

In order to understand how the flow approaches and interacts with the slow dynamics we decompose the full solution, where u is a vector of all the unknowns, as

u = u α + u ′α where α represents the Ro → 0, F r → 0 or the simultaneous limit of both (QG for

quasi-geostrophy), with

P α u α = u α    P α u ′α = 0 ,

and where Pαu represents the projection of the full solution onto the null space of the fast operator. We use this decomposition to find evolution equations for the components of the flow (and the corresponding energy) on and off the slow manifold.

Numerical simulations indicate that for the geometry considered (triply periodic) and the type of forcing applied, the fast waves act as a conduit, moving energy onto the slow manifold. This decomposition clarifies how the energy is exchanged when either the stratification or the rotation is weak. In the quasi-geostrophic limit the energetics are less clear, however it is observed that the energy off the slow manifold equilibrates to a quasi-steady value.

We will also discuss generalizations of the method of cancellations of oscillations of Schochet for two distinct fast time scales, i.e. which fast time scale is fastest? We will give an example for the quasi-geostrophic limit of the Boussinesq equations.

At the end we will briefly discuss how understanding the role of oscillations has allowed us to develop convergent algorithms for parallel-in-time methods.

Beth A. Wingate - University of Exeter

Jared Whitehead - Brigham Young University

Terry Haut - Los Alamos National Laboratory

Fri, 09 May 2014

14:15 - 15:15
C6

Numerical modelling of river dynamics

Andrew Nicholas
(University of Exeter)
Abstract

Numerical models provide valuable tools for integrating understanding of riverine processes and morphology. Moreover, they have considerable potential for use in investigating river responses to environmental change and catchment management, and for aiding the interpretation of alluvial deposits and landforms. For this potential to be realised fully, such models must be capable of representing diverse river styles, and the spatial and temporal transitions between styles that can be driven by environmental forcing. However, while numerical modelling of rivers has advanced significantly over the past few decades, this has been accomplished largely by developing separate approaches to modelling different styles of river (e.g., meanders and braided networks). In addition, there has been considerable debate about what should constitute the ‘basic ingredients’ of river models, and the degree to which the environmental processes governing river evolution can be simplified in such models. This seminar aims to examine these unresolved issues, with particular reference to the simulation of large rivers and their floodplains.

Fri, 04 Nov 2011

14:30 - 15:30
DH 3rd floor SR

Data-based stochastic subgrid-scale parametrisation: an approach using cluster-weighted modelling

Dr Frank Kwasniok
(University of Exeter)
Abstract

A new approach for data-based stochastic parametrisation of unresolved scales and processes in numerical weather and climate prediction models is introduced. The subgrid-scale model is conditional on the state of the resolved scales, consisting of a collection of local models. A clustering algorithm in the space of the resolved variables is combined with statistical modelling of the impact of the unresolved variables. The clusters and the parameters of the associated subgrid models are estimated simultaneously from data. The method is tested and explored in the framework of the Lorenz '96 model using discrete Markov processes as local statistical models. Performance of the scheme is investigated for long-term simulations as well as ensemble prediction. The present method clearly outperforms simple parametrisation schemes and compares favourably with another recently proposed subgrid scheme also based on conditional Markov chains.

Subscribe to University of Exeter