15:30
Bicommutant categories
Abstract
Bicommutant categories, initially invented for the purposes of Chern-Simons theory and 2d CFT, seem to also appear in other domains of math with examples related to group theory, and dynamical systems.
Bicommutant categories, initially invented for the purposes of Chern-Simons theory and 2d CFT, seem to also appear in other domains of math with examples related to group theory, and dynamical systems.
Involutive knot Floer homology, a refinement of knot Floer theory, is a powerful knot invariant which was used to solve several long-standing problems, including the one-is-not-enough result for 4-manifolds with boundary. In this talk, we show that if the involutive knot Floer homology of a knot K admits an invariant splitting, then the induced splitting if the knot Floer homology of P(K), for any pattern P, can be made invariant under its \iota_K involution. As an application, we construct an infinite family of examples of pairs of exotic contractible 4-manifolds which survive one stabilization, and observe that some of them are potential candidates for surviving two stabilizations.
One of the oldest open problems in representation theory is to classify the irreducible unitary representations of a semisimple Lie group G_R. Such representations play a fundamental role in harmonic analysis and the Langlands program and arise in physics as the state space of quantum mechanical systems in the presence of G_R-symmetry. Most unitary representations of G_R are realized, via some kind of induction, from unitary representations of proper Levi subgroups. Thus, the major obstacle to understanding the unitary dual of G_R is identifying the "non-induced" unitary representations of G_R. In previous joint work with Losev and Matvieievskyi, we have proposed a general construction of these non-induced representations, which we call "unipotent" representations of G_R. Unfortunately, the methods we employ do not provide a proof that these representations are unitary. In this talk, I will explain how one can apply Saito's theory of mixed Hodge modules to overcome this difficulty, giving a uniform proof of the unitarity of all unipotent representations. This is joint work in progress with Dougal Davis
Given two mathematical objects, the most basic question is whether they are the same. We will discuss this question for triangulations of three-manifolds. In practice there is fast software to answer this question and theoretically the problem is known to be decidable. However, our understanding is limited and known theoretical algorithms could have extremely long run-times. I will describe a programme to show that the 3-manifold homeomorphism problem is in the complexity class NP, and discuss the important sub-case of Seifert fibered spaces.
In a classical work, Bowen and Margulis proved the equidistribution of
closed geodesics in any hyperbolic manifold. Together with Jeremy Kahn
and Vladimir Marković, we asked ourselves what happens in a
three-manifold if we replace curves by surfaces. The natural analog of a
closed geodesic is then a minimal surface, as totally geodesic surfaces
exist only very rarely. Nevertheless, it still makes sense (for various
reasons, in particular to ensure uniqueness of the minimal
representative) to restrict our attention to surfaces that are almost
totally geodesic.
The statistics of these surfaces then depend very strongly on how we
order them: by genus, or by area. If we focus on surfaces whose *area*
tends to infinity, we conjecture that they do indeed equidistribute; we
proved a partial result in this direction. If, however, we focus on
surfaces whose *genus* tends to infinity, the situation is completely
opposite: we proved that they then accumulate onto the totally geodesic
surfaces of the manifold (if there are any).
Sessions led by Dr Pierre Roux will take place on
30 May 2023 10:00 - 12:00 C2
6 June 2023 15:00 - 17:00 C2
8 June 2023 10:00 - 12:00 C2
13 June 2023 15:00 - 17:00 C2
Participants should have a good knowledge of Functional Analysis; basic knowledge about PDEs and distributions; and notions in probability. Should you be interested in taking part in the course, please send an email to @email.
We will start from the description of a particle system modelling a finite size network of interacting neurons described by their voltage. After a quick description of the non-rigorous and rigorous mean-field limit results, we will do a detailed analytical study of the associated Fokker-Planck equation, which will be the occasion to introduce in context powerful general methods like the reduction to a free boundary Stefan-like problem, the relative entropy methods, the study of finite time blowup and the numerical and theoretical exploration of periodic solutions for the delayed version of the model. I will then present some variants and related models, like nonlinear kinetic Fokker-Planck equations and continuous systems of Fokker-Planck equations coupled by convolution.
Sessions led by Dr Pierre Roux will take place on
30 May 2023 10:00 - 12:00 C2
6 June 2023 15:00 - 17:00 C2
8 June 2023 10:00 - 12:00 C2
13 June 2023 15:00 - 17:00 C2
Participants should have a good knowledge of Functional Analysis; basic knowledge about PDEs and distributions; and notions in probability. Should you be interested in taking part in the course, please send an email to @email.
We will start from the description of a particle system modelling a finite size network of interacting neurons described by their voltage. After a quick description of the non-rigorous and rigorous mean-field limit results, we will do a detailed analytical study of the associated Fokker-Planck equation, which will be the occasion to introduce in context powerful general methods like the reduction to a free boundary Stefan-like problem, the relative entropy methods, the study of finite time blowup and the numerical and theoretical exploration of periodic solutions for the delayed version of the model. I will then present some variants and related models, like nonlinear kinetic Fokker-Planck equations and continuous systems of Fokker-Planck equations coupled by convolution.
30 May 2023 10:00 - 12:00 C2
6 June 2023 15:00 - 17:00 C2
8 June 2023 10:00 - 12:00 C2
13 June 2023 15:00 - 17:00 C2
Participants should have a good knowledge of Functional Analysis; basic knowledge about PDEs and distributions; and notions in probability. Should you be interested in taking part in the course, please send an email to @email.
We will start from the description of a particle system modelling a finite size network of interacting neurons described by their voltage. After a quick description of the non-rigorous and rigorous mean-field limit results, we will do a detailed analytical study of the associated Fokker-Planck equation, which will be the occasion to introduce in context powerful general methods like the reduction to a free boundary Stefan-like problem, the relative entropy methods, the study of finite time blowup and the numerical and theoretical exploration of periodic solutions for the delayed version of the model. I will then present some variants and related models, like nonlinear kinetic Fokker-Planck equations and continuous systems of Fokker-Planck equations coupled by convolution.
The course will serve as an introduction to the theory of multivalued Dir-minimizing functions, which can be viewed as harmonic functions which attain multiple values at each point.
Aimed at Postgraduate students interested in geometric measure theory and its link with elliptic PDEs, a solid knowledge of functional analysis and Sobolev spaces, acquaintance with variational
methods in PDEs and some basic geometric measure theory are recommended.
Sessions led by Dr Immanuel Ben Porat will take place on
09 May 2023 15:30 - 17:30 C4
16 May 2023 15:30 - 17:30 C4
23 May 2023 15:30 - 17:30 C4
30 May 2023 15:30 - 17:30 C4
Should you be interested in taking part in the course, please send an email to @email.
The space of unordered tuples. The notion of differentiability and the theory of metric Sobolev in the context of multi-valued functions. Multivalued maximum principle and Holder regularity. Estimates on the Hausdorff dimension of the singular set of Dir-minimizing functions. If time permits: mass minimizing currents and their link with Dir-minimizers.
The course will serve as an introduction to the theory of multivalued Dir-minimizing functions, which can be viewed as harmonic functions which attain multiple values at each point.
Aimed at Postgraduate students interested in geometric measure theory and its link with elliptic PDEs, a solid knowledge of functional analysis and Sobolev spaces, acquaintance with variational
methods in PDEs and some basic geometric measure theory are recommended.
Sessions led by Dr Immanuel Ben Porat will take place on
09 May 2023 15:30 - 17:30 C4
16 May 2023 15:30 - 17:30 C4
23 May 2023 15:30 - 17:30 C4
30 May 2023 15:30 - 17:30 C4
Should you be interested in taking part in the course, please send an email to @email.
The space of unordered tuples. The notion of differentiability and the theory of metric Sobolev in the context of multi-valued functions. Multivalued maximum principle and Holder regularity. Estimates on the Hausdorff dimension of the singular set of Dir-minimizing functions. If time permits: mass minimizing currents and their link with Dir-minimizers.