Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Wed, 28 Sep 2022 09:00 -
Tue, 30 Jun 2026 17:00
Mathematical Institute

Cascading Principles - a major mathematically inspired art exhibition by Conrad Shawcross - extended until June 2026

Further Information

Oxford Mathematics is delighted to be hosting one of the largest exhibitions by the artist Conrad Shawcross in the UK. The exhibition, Cascading Principles: Expansions within Geometry, Philosophy, and Interference, brings together over 40 of Conrad's mathematically inspired works from the past seventeen years. Rather than in a gallery, they are placed in the working environment of the practitioners of the subject that inspired them, namely mathematics.

Conrad Shawcross models scientific thought and reasoning within his practice. Drawn to mathematics, physics, and philosophy from the early stages of his artistic career, Shawcross combines these disciplines in his work. He places a strong emphasis on the nature of matter, and on the relativity of gravity, entropy, and the nature of time itself. Like a scientist working in a laboratory, he conceives each work as an experiment. Modularity is key to his process and many works are built from a single essential unit or building block. If an atom or electron is a basic unit for physicists, his unit is the tetrahedron.

Unlike other shapes, a tetrahedron cannot tessellate with itself. It cannot cover or form a surface through its repetition - one tetrahedron is unable to fit together with others of its kind. Whilst other shapes can sit alongside one another without creating gaps or overlapping, tetrahedrons cannot resolve in this way. Shawcross’ Schisms are a perfect demonstration of this failure to tessellate. They bring twenty tetrahedrons together to form a sphere, which results in a deep crack and ruptures that permeate its surface. This failure of its geometry means that it cannot succeed as a scientific model, but it is this very failure that allows it to succeed as an art work, the cracks full of broad and potent implications.

The show includes all Conrad's manifold geometric and philosophical investigations into this curious, four-surfaced, triangular prism to date. These include the Paradigms, the Lattice Cubes, the Fractures, the Schisms, and The Dappled Light of the Sun. The latter was first shown in the courtyard of the Royal Academy and subsequently travelled all across the world, from east to west, China to America.

The show also contains the four Beacons. Activated like a stained-glass window by the light of the sun, they are composed of two coloured, perforated disks moving in counter rotation to one another, patterning the light through the non-repeating pattern of holes, and conveying a message using semaphoric language. These works are studies for the Ramsgate Beacons commission in Kent, as part of Pioneering Places East Kent.

The exhibition Cascading Principles: Expansions within Geometry, Philosophy, and Interference is curated by Fatoş Üstek, and is organised in collaboration with Oxford Mathematics. 

The exhibition is open 9am-5pm, Monday to Friday. Some of the works are in the private part of the building and we shall be arranging regular tours of that area. If you wish to join a tour please email @email.

The exhibition runs until 30 June 2026. You can see and find out more here.

Watch the four public talks centred around the exhibition (featuring Conrad himself).

The exhibition is generously supported by our longstanding partner XTX Markets.

Images clockwise from top left of Schism, Fracture, Paradigm and Axiom

Schism Fracture

Axiom Paradigm

Fri, 28 Feb 2025 09:00 -
Mon, 01 Jun 2026 00:00
Mezzanine

Kathleen Hyndman - Nature+Maths=Art

Further Information

The Mathematical Institute is delighted to be hosting a major exhibition of artist Kathleen Hyndman's mathematically inspired work.

The exhibition of drawings and paintings illustrate Hyndman’s desire to see nature and the world around her in mathematical sequences and geometrical patterns. Golden Section proportions and angles, prime numbers as well as Fibonacci numbers and eccentric constructions are all used to create works achieving a calm and balanced unity.

Born in Essex, Hyndman trained at Kingston-upon-Thames School of Art and exhibited widely in the UK and abroad, including MOMA Oxford and the Hayward Annual in London. As well as a full time artist, she was also a teacher and mother of two. She lived and had her studio in Kingston Bagpuize in Oxfordshire and had exhibitions at Zuleika Gallery in Woodstock until her death in 2022.

Open Monday to Friday 9am to 5pm.

The exhibition is curated by Zuleika Gallery and Professor Martin Kemp FBA, and will run until June 2026.

Exhibition brochure

Bottom from left:  Hot Breeze, 1994; Heat, 1976; Exit (a seventeen sided work), 1993; Straight Line Rotation, White on Black. Forest, 1986

Below: film of the exhibition by Evan Nedyalkov

Mon, 26 Jan 2026
15:30
L5

Taut smoothings and shortest geodesics

Macarena Arenas
(Cambridge University)
Abstract

In this talk we will discuss the connection between combinatorial properties of minimally self-intersecting curves on a surface S and the geometric behaviour of geodesics on S when S is endowed with a Riemannian metric. In particular, we will explain the interplay between a smoothing, which is a type of surgery on a curve that resolves a self-intersection, and k-systoles, which are shortest geodesics having at least k self-intersections, and we will present some results that partially elucidate this interplay. There will be lots of pictures. Based on joint work with Max Neumann-Coto.

Mon, 26 Jan 2026
16:00
C5

Phenomenon of l-independence

Suvir Rathore
(Cambridge University)
Abstract
Abstract: In number theory, one often studies compatible systems of l-adic representations of geometric origin where l is a prime number. The proof of the Weil conjectures (in particular the Riemann hypothesis) show the the l-adic cohomology of a variety over a finite field is independent of l in some sense.
 
After proving the Weil conjectures, Deligne offered some more general conjectures, which hint at deeper l-independence statements as predicted by Grothendieck's vision of a theory of motives. One key input in proving this conjecture is the Langland's correspondence.
 
We will introduce this phenomenon guided by the conjectural theory of motives through the lens of a universal cohomology theory, and explain how one uses the Langlands correspondence.
Mon, 26 Jan 2026

17:00 - 18:00
L1

Enhancing Wind Energy Using Unsteady Fluid Mechanics

Prof. John Dabiri
(California Institute of Technology, USA)
Further Information
Abstract

This talk will describe recent studies of how time-dependent, unsteady flow physics can be exploited to improve the performance of energy harvesting systems such as wind turbines. A theoretical analysis will revisit the seminal Betz derivation to identify the role of unsteady flow from first principles. Following will be a discussion of an experimental campaign to test the predictions of the theoretical model. Finally, a new line of research related to turbulence transition and inspired by the work of T. Brooke Benjamin will be introduced.

 

Tue, 27 Jan 2026
12:30
C3

Electrostatic regulation of biomolecular condensates.

Jasper Knox
(Dept of Engineering Maths University of Bristol)
Abstract

Biomolecular condensates are membraneless assemblies of biomolecules (such as proteins or nucleic acids) formed through liquid-liquid phase separation. Many biomolecules are electrically charged, making condensates highly sensitive to the local electrochemical environment. In this talk, I will discuss our recent theoretical work on the dynamics of charged condensates and the role of salt concentration in their evolution toward equilibrium. Two-dimensional simulations of a thermodynamically consistent phase-field model reveal that salt can arrest coarsening by affecting the relative strength of interfacial energy, associated with the condensate surface, and electrostatic energy, arising from the formation of an electric double layer across liquid interfaces. At low salt concentrations, the electrostatic energy of the double layer becomes comparable to the interfacial energy, resulting in the emergence of multiple condensates with a fixed size. These results show that salt can act as a dynamic regulator of condensate size, with implications for both understanding biological organisation and modulating the behaviour of synthetic condensates.

Tue, 27 Jan 2026
14:00
L6

Searching for 3-dimensional subalgebras

Adam Thomas
(University of Warwick)
Abstract

Let g be the Lie algebra of a simple algebraic group over an algebraically closed field of characteristic p. When p=0 the celebrated Jacobson-Morozov Theorem promises that every non-zero nilpotent element of g is contained in a simple 3-dimensional subalgebra of g (an sl2). This has been extended to odd primes but what about p=2? There is still a unique 3-dimensional simple Lie algebra, known colloquially as fake sl2, but there are other very sensible candidates like sl2 and pgl2. In this talk, Adam Thomas from the University of Warwick will discuss recent joint work with David Stewart (Manchester) determining which nilpotent elements of g live in subalgebras isomorphic to one of these three Lie algebras. There will be an abundance of concrete examples, calculations with small matrices and even some combinatorics.

Tue, 27 Jan 2026
14:00
C3

Social Interactions in Chimpanzees

Gesine Reinert
(Department of Statistics, University of Oxford)
Abstract
This work is based on 30 years of behavioural observations of the largest-known group of wild chimpanzees. The data includes 10 different proximity and interaction levels between chimpanzees.  There is an abrupt transition from cohesion to polarization in 2015 and the emergence of two distinct groups by 2018.
First we combine the data into a time series of a single weighted network per time stamps. Then we identify groups of individuals that stay related for a significant length of time. We detect cliques in the animal social network time series which match qualitative observations by chimpanzee experts.  Finally we introduce a simple  model to explain the split.
 
This is based on joint work with Mihai Cucuringu, Yixuan He, John Mitani, Aaron Sandel, and David Wipf.  
Tue, 27 Jan 2026

14:00 - 15:00
L4

Exploring temporal graphs

Paul Bastide
(University of Oxford)
Abstract

A temporal graph $G$ is a sequence of graphs $G_1, G_2, \ldots, G_t$ on the same vertex set. In this talk, we are interested in the analogue of the Travelling Salesman Problem for temporal graphs. It is referred to in the literature as the Temporal Exploration Problem, and asks for the minimum length of an exploration of the graph, that is, a sequence of vertices such that at each time step $t$, one either stays at the same vertex or moves along a single edge of $G_t$.

One natural and still open case is when each graph $G_t$ is connected and has bounded maximum degree. We present a short proof that any such graph admits an exploration in $O(n^{3/2}\sqrt{\log n})$ time steps. In fact, we deduce this result from a more general statement by introducing the notion of average temporal maximum degree. This more general statement improves the previous best bounds, under a unified approach, for several studied exploration problems.

This is based on joint work with Carla Groenland, Lukas Michel and Clément Rambaud.

Tue, 27 Jan 2026
15:30
L4

Developments in Vafa-Witten theory

Martijn Kool
(Utrecht)
Abstract

S-duality is an intriguing symmetry of (twisted) N=4 supersymmetric Yang-Mills theory on a four-manifold. When the four-manifold underlies a complex projective surface, it leads to the Vafa-Witten invariants defined by Tanaka-Thomas in 2017. I will discuss some developments related to Azumaya algebras, universality, Seiberg-Witten invariants, wall-crossing for Nakajima quiver varieties, the structure of S-duality, and modular curves (including relations to the Rogers-Ramanujan continued fraction and Klein quartic).

Tue, 27 Jan 2026
16:00
C3

Entropy and large deviations for random unitary representations

Tim Austin
(University of Warwick)
Abstract

This talk by Tim Austin, at the University of Warwick, will be an introduction to "almost periodic entropy".  This quantity is defined for positive definite functions on a countable group, or more generally for positive functionals on a separable C*-algebra.  It is an analog of Lewis Bowen's "sofic entropy" from ergodic theory.  This analogy extends to many of its properties, but some important differences also emerge.  Tim will not assume any prior knowledge about sofic entropy.

After setting up the basic definition, Tim will focus on the special case of finitely generated free groups, about which the most is known.  For free groups, results include a large deviations principle in a fairly strong topology for uniformly random representations.  This, in turn, offers a new proof of the Collins—Male theorem on strong convergence of independent tuples of random unitary matrices, and a large deviations principle for operator norms to accompany that theorem.

Tue, 27 Jan 2026
16:00
L6

Spectral gaps of random hyperbolic surfaces

William Hide
Abstract
Based on joint work with Davide Macera and Joe Thomas.
 
The first non-zero eigenvalue, or spectral gap, of the Laplacian on a closed hyperbolic surface encodes important geometric and dynamical information about the surface. We study the size of the spectral gap for random large genus hyperbolic surfaces sampled according to the Weil-Petersson probability measure. We show that there is a c>0 such that a random surface of genus g has spectral gap at least 1/4-O(g^-c) with high probability.  Our approach adapts the polynomial method for the strong convergence of random matrices, introduced by Chen, Garza-Vargas, Tropp and van Handel, and its generalization to the strong convergence of surface groups by Magee, Puder and van Handel, to the Laplacian on Weil-Petersson random hyperbolic surfaces.
Wed, 28 Jan 2026

16:00 - 17:00
L6

TBC

Marcos Escartín Ferrer
(University Zaragoza)
Thu, 29 Jan 2026

12:00 - 13:00
L3

Mathematical modelling of sleep-wake regulation: light, clocks and digital-twins

Anne Skeldon
(University of Surrey)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Anne Skeldon’s background is in dynamical systems and bifurcation theory. Her early research focused on pattern formation and fluid mechanics, particularly the Faraday wave problem. She later shifted towards applications in biology and sociology, serving as a co-investigator on the six-year complexity-science project Evolution and Resilience of Industrial Ecosystems. She is part of the Mathematics of Life and Social Sciences research group and co-leads the cross-faculty Centre for Mathematical and Computational Biology.

Her current research centres on sleep, circadian rhythms, and data science. She collaborates with researchers at the Surrey Sleep Research Centre to develop and analyse mathematical models of sleep–wake regulation—work that has featured in the UK parliamentary debate, “School should start at 10am because teenagers are too tired.” She has a particular interest in the influence of the light environment on sleep, including the potential effects of permanent daylight saving time, and in the use of mathematical models for fatigue risk management.

Abstract

 

We all sleep. But what determines when and for how long? In this talk I’ll describe some of the fundamental mechanisms that regulate sleep. I’ll introduce the nonsmooth coupled oscillator systems that form the basis of current mathematical models of sleep-wake regulation and discuss their dynamical behaviour. I will describe how we are using models to unravel environmental, societal and physiological factors that determine sleep timing and outline how constructing digital-twins could enable us to create personalised light interventions for sleep timing disorders.

 

Thu, 29 Jan 2026

12:00 - 13:00
Lecture Room 4, Mathematical Institute

The latent variable proximal point algorithm for variational problems with inequality constraints

John Papadopoulos
Further Information
Abstract
John Papadopoulos is going to talk about: 'The latent variable proximal point algorithm for variational problems with inequality constraints'
 
The latent variable proximal point (LVPP) algorithm is a framework for solving infinite-dimensional variational problems with pointwise inequality constraints. The algorithm is a saddle point reformulation of the Bregman proximal point algorithm. Although equivalent at the continuous level, the saddle point formulation is significantly more robust after discretization.
 
LVPP yields simple-to-implement numerical methods with robust convergence and observed mesh-independence for obstacle problems, contact, fracture, plasticity, and others besides; in many cases, for the first time. The framework also extends to more complex constraints, providing means to enforce convexity in the Monge--Ampère equation and handling quasi-variational inequalities, where the underlying constraint depends implicitly on the unknown solution. Moreover the algorithm is largely discretization agnostic allowing one to discretize with very-high-order $hp$-finite element methods in an efficient manner. In this talk, we will describe the LVPP algorithm in a general form and apply it to a number problems from across mathematics.


 

Thu, 29 Jan 2026

12:00 - 13:00
C5

On the exact failure of the hot spots conjecture

Dr. Mitchell Taylor
(ETH Zurich)
Abstract
The hot spots conjecture asserts that as time goes to infinity, the hottest and coldest points in an insulated domain will migrate towards the boundary of the domain. In this talk, I will describe joint work with Jaume de Dios Pont and Alex Hsu where we find the exact failure of the hot spots conjecture in every dimension. 


 

Thu, 29 Jan 2026

14:00 - 15:00
Lecture Room 3

Finite element form-valued forms

Prof Kaibo Hu
(Mathematical Institute )
Abstract

Professor Kaibo Hu will be talking about: 'Structure-Preserving Finite Element Methods for the Einstein Equations'

Some of the most successful vector-valued finite elements in computational electromagnetics and fluid mechanics, such as the Nédélec and Raviart-Thomas elements, are recognized as special cases of Whitney’s discrete differential forms. Recent efforts aim to go beyond differential forms and establish canonical discretizations for more general tensors. An important class is that of form-valued forms, or double forms, which includes the metric tensor (symmetric (1,1)-forms) and the curvature tensor (symmetric (2,2)-forms). Like the differential structure of forms is encoded in the de Rham complex, that of double forms is encoded in the Bernstein–Gelfand–Gelfand (BGG) sequences and their cohomologies. Important examples include the Calabi complex in geometry and the Kröner complex in continuum mechanics.
These constructions aim to address the problem of discretizing tensor fields with general symmetries on a triangulation, with a particular focus on establishing discrete differential-geometric structures and compatible tensor decompositions in 2D, 3D, and higher dimensions.
 

 

 

 



 

Thu, 29 Jan 2026
17:00
L3

Sum-product phenomena in arbitrary rings and related problems via model theory

Simon Machado
(ETH Zurick)
Abstract

Approximate subrings are subsets $A$ of a ring $R$ satisfying \[ A + A + AA \subset F + A \] for some finite $F \subset R$. They encode the failure of sum-product phenomena, much like approximate subgroups encode failure of growth in groups.

I will discuss how approximate subrings mirror approximate subgroups and how model-theoretic tools, such as a stabilizer lemma for approximate subrings due to Krupiński, lead to structural results implying a general, non-effective sum-product phenomenon in arbitrary rings: either sets grow rapidly under sum and product, or nilpotent ideals govern their structure. I will also outline related results for infinite approximate subrings and conjectures unifying known (effective) sum-product phenomena.

Based on joint work with Krzysztof Krupiński.

Fri, 30 Jan 2026

11:00 - 12:00
L4

Qualitative analysis of reaction-diffusion solutions

Prof Rui Li
(College of Big Data and Internet Shenzhen Technology University)
Abstract

Based on mathematical ecological models, this report reviews the impact of spatially heterogeneous environments on the persistence and distribution of biological populations. The report aims to elucidate the interplay between population density and key factors, including diffusion coefficients, resource availability, and habitat structure. The study first investigates the ecological consequences of dispersal strategies within environments characterized by uneven resource distribution, demonstrating the monotonic dependence of peak population densities on diffusion rates. Furthermore, analysis of a consumer-resource system indicates that under resource-limited conditions, the ecosystem converges to a globally asymptotically stable state of coexistence. Building on these findings, the report additionally explores the constraints imposed by domain geometry on the spatial patterning of populations.

Fri, 30 Jan 2026
12:00
Quillen Room N3.12

Three realisations of theta functions via the Heisenberg representation

Allan Perez Murillo
(University of Bristol)
Abstract
The classical theta functions appear throughout number theory, geometry, and physics, from Riemann’s zeta function to the projective geometry of abelian varieties. Despite these appearances, theta functions admit a unifying description under the lens of representation theory.
 
In this talk, I will explain how the Heisenberg representation, together with the Stone–von Neumann–Mackey theorem, provides a framework that
identifies three equivalent realizations of theta functions:
  • as holomorphic functions on certain symplectic spaces
  • as matrix coefficients of the Heisenberg (and metaplectic) representation,
  • as sections of line bundles on abelian varieties.
I will describe how these perspectives fit together and, if time permits, illustrate the equivalence through concrete one-dimensional examples. The
emphasis will be on ideas rather than technicalities. I will aim to make the talk self-contained, assuming familiarity with complex geometry and representation theory; background in Lie theory and harmonic analysis will be helpful but not essential.
Fri, 30 Jan 2026
15:00
South Mezz Circulation

OxWIM Day Launch Party

Abstract

Join us for the launch party for our conference for women and non-binary people, OxWIM Day 2026, following Fridays@2. Coffee, tea and cake will be provided. Conference registration is currently open at www.oxwomeninmaths.co.uk

Mon, 02 Feb 2026
14:15
L4

Non-generic neck pinching in Lagrangian mean curvature flow

Spandan Ghosh
((Mathematical Institute University of Oxford))
Abstract
Lagrangian mean curvature flow (LMCF) is a way to deform a Lagrangian submanifold inside a Calabi--Yau manifold according to the negative gradient of the area functional. There are influential conjectures about LMCF due to Thomas--Yau and Joyce, describing the long-time behaviour and singularities of the flow. By foundational work of Neves, Type I singularities are ruled out under mild assumptions, so it is important to construct examples of Type II singularities with a given blow-up model. In this talk, we describe a general method to construct examples of Lawlor neck pinching in LMCF in complex dimension at least 3. We employ a P.D.E. based approach to solve the problem, as an example of 'parabolic gluing'. The main technical tool we use is the notion of manifolds with corners and a-corners, as introduced by Joyce following earlier work of Melrose. Time permitting, we will discuss how one may construct examples of generic neck pinching.
Mon, 02 Feb 2026

15:30 - 16:30
L3

Mean field games without rational expectations

Benjamin Moll
(LSE)
Abstract
Mean Field Game (MFG) models implicitly assume “rational expectations”, meaning that the heterogeneous agents being modeled correctly know all relevant transition probabilities for the complex system they inhabit. When there is common noise, it becomes necessary to solve the “Master equation” (a.k.a. “Monster equation”), a Hamilton-JacobiBellman equation in which the infinite-dimensional density of agents is a state variable. The rational expectations assumption and the implication that agents solve Master equations is unrealistic in many applications. We show how to instead formulate MFGs with non-rational expectations. Departing from rational expectations is particularly relevant in “MFGs with a low-dimensional coupling”, i.e. MFGs in which agents’ running reward function depends on the density only through low-dimensional functionals of this density. This happens, for example, in most macroeconomics MFGs in which these lowdimensional functionals have the interpretation of “equilibrium prices.” In MFGs with a low-dimensional coupling, departing from rational expectations allows for completely sidestepping the Master equation and for instead solving much simpler finite-dimensional HJB equations. We introduce an adaptive learning model as a particular example of nonrational expectations and discuss its properties.
Mon, 02 Feb 2026

16:30 - 17:30
L4

Mean-field limits of non-exchangeable interacting diffusions on co-evolutionary networks

Prof. David Poyato
(University of Granada)
Abstract
Multi-agent systems are ubiquitous in Science, and they can be regarded as large systems of interacting particles with the ability to generate large-scale self-organized structures from simple local interactions rules between each agent and its neighbors. Since the size of the system is typically huge, an important question is to connect the microscopic and macroscopic scales in terms of mean-field limits, which is a fundamental problem in Physics and Mathematics closely related to Hilbert Sixth Problem. In most real-life applications, the communication between agents is not based on uniform all-to-all couplings, but on highly heterogeneous connections, and this makes agents distinguishable. However, the classical strategies based on mean-field limits are strongly based on the crucial assumption that agents are indistinguishable, and it therefore does not apply to our distinguishable setting, so that we need substantially new ideas.
 
In this talk I will present a recent work about the rigorous derivation of the mean-field limit for systems of non-exchangeable interacting diffusions on co-evolutionary networks. While previous research has primarily addressed continuum limits or systems with linear weight dynamics, our work overcomes these restrictions. The main challenge arises from the coupling between the network weight dynamics and the agents' states, which results in a non-Markovian dynamics where the system’s future depends on its entire history. Consequently, the mean-field limit is not described by a partial differential equation, but by a system of non-Markovian stochastic integrodifferential equations. A second difficulty stems from the non-linear weight dynamics, which requires a careful choice for the limiting network structure. Due to the limitations of the classical theory of graphons (Lovász and Szegedy, 2006) in handling non-linearities, we employ K-graphons (Lovász and Szegedy, 2010), also termed probability-graphons (Abraham, Delmas, and Weibel, 2025). This framework pro seems to provide a natural topology that is compatible with such non-linearities.
 
This is a joint work with Julián Cabrera-Nyst (University of Granada).
Tue, 03 Feb 2026
14:00
C3

Exploring partition diversity in complex networks

Dr. Lena Mangold
(IT:U Interdisciplinary Transformation University Austria)
Abstract

Partition diversity refers to the concept that for some networks there may be multiple, similarly plausible ways to group the nodes, rather than one single best partition. In this talk, I will present two projects that address this idea from different but complementary angles. The first introduces the benchmark stochastic cross-block model (SCBM), a generative model designed to create synthetic networks with two distinct 'ground-truth' partitions. This allows us to study the extent to which existing methods for partition detection are able to reveal the coexistence of multiple underlying structures. The second project builds on this benchmark and paves the way for a Bayesian inference framework to directly detect coexisting partitions in empirical networks. By formulating this model as a microcanonical variant of the SCBM, we can evaluate how well it fits a given network compared to existing models. We find that our method more reliably detects partition diversity in synthetic networks with planted coexisting partitions, compared to methods designed to detect a single optimal partition. Together, the two projects contribute to a broader understanding of partition diversity by offering tools to explore the ambiguity of network structure.

Tue, 03 Feb 2026
15:00
L6

Divergence in groups with micro-supported actions

Letizia Issini
Abstract
The divergence of a group is a quasi-isometry invariant that measures how difficult it is to connect two points while avoiding a ball around the identity. It is easy to see that it is linear for direct products and deduce the same result for branch groups (a class of groups acting on rooted trees, for example the Grigorchuk group). I will discuss divergence for weakly branch groups, in particular the Basilica group. I will also present a generalisation for certain groups admitting a micro-supported action on a Hausdorff topological space, i.e containing elements with arbitrarily small support.
Joint work in progress with D. Francoeur and T. Nagnibeda
Tue, 03 Feb 2026
15:30

TBA

Kobi Kremnitzer
((Mathematical Institute University of Oxford))
Wed, 04 Feb 2026

11:00 - 13:00
L4

Scaling limit of a weakly asymmetric simple exclusion process in the framework of regularity structures

Prof. Hendrik Weber
(University of Münster)
Abstract
We prove that a parabolically rescaled and suitably renormalised height function of a weakly asymmetric simple exclusion process on a circle converges to the Cole-Hopf solution of the KPZ equation. This is an analogue of the celebrated result by Bertini and Giacomin from 1997 for the exclusion process on a circle with any particles density. The main goal of this article is to analyse the interacting particle system using the framework of regularity structures without applying the Gärtner transformation, a discrete version of the Cole-Hopf transformation which linearises the KPZ equation. 
 
Our analysis relies on discretisation framework for regularity structures developed by Erhard and Hairer [AIHP 2019] as well as estimates for iterated integrals with respect to jump martingales derived by Grazieschi, Matetski and Weber [PTRF 2025]. The main technical challenge addressed in this work is the renormalisation procedure which requires a subtle analysis of regularity preserving discrete convolution operators. 
 
Joint work with R. Huang (Münster / now Pisa) and K. Matetski (Michigan State).


 

Thu, 05 Feb 2026

12:00 - 13:00
L3

Fracture, by design: topology-programmed damage in Maxwell lattices

Marcelo Dias
(University of Edinburgh)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Dr Marcelo A. Dias is a Reader in Structural Engineering at the University of Edinburgh. His research spans theoretical structural mechanics, soft condensed matter, and materials modelling. He focuses on understanding how the mechanical behaviour of elastic bodies emerges from the interplay between material composition and carefully designed internal geometry. His work has applications across shape formation in nature, biomechanics, materials and structural mechanics, and the controlled design and functionality of thin plates and shells. You can find some wonderful examples of this research on his research site: https://mazdias.wordpress.com/research/ 

Abstract

Fracture is usually treated as an outcome to be avoided; here we see it as something we may write into a lattice's microstructure. Maxwell lattices sit at the edge of mechanical stability, where robust topological properties provide a way on how stress localises and delocalises across the structure with directional preference. Building on this, we propose a direct relationship between lattice topology and damage propagation. We identify a set of topology- and geometry-dependent parameters that gives a simple, predictive framework for nonideal Maxwell lattices and their damage processes. We will discuss how topological polarisation and domain walls steer and arrest damage in a repeatable way. Experiments confirm the theoretical predicted localisation and the resulting tuneable progression of damage and show how this control mechanism can be used to enhance dissipation and raise the apparent fracture energy.

 

Thu, 05 Feb 2026
12:00
Lecture Room 4, Mathematical Institute

TBA

Jaroslav Fowkes
Abstract

TBA

Thu, 05 Feb 2026

14:00 - 15:00
(This talk is hosted by Rutherford Appleton Laboratory)

A Riemannian Approach for PDE-Constrained Shape Optimization Using Outer Metrics

Estefania Loayza Romero
(University of Strathclyde)
Abstract

Speaker Estefania Loayza Romero will talk about:  A Riemannian Approach for PDE-Constrained Shape Optimization Using Outer Metrics

In PDE-constrained shape optimisation, shapes are traditionally viewed as elements of a Riemannian manifold, specifically as embeddings of the unit circle into the plane, modulo reparameterizations. The standard approach employs the Steklov-Poincaré metric to compute gradients for Riemannian optimisation methods. A significant limitation of current methods is the absence of explicit expressions for the geodesic equations associated with this metric. Consequently, algorithms have relied on retractions (often equivalent to the perturbation of identity method in shape optimisation) rather than true geodesic paths. Previous research suggests that incorporating geodesic equations, or better approximations thereof, can substantially enhance algorithmic performance. This talk presents numerical evidence demonstrating that using outer metrics, defined on the space of diffeomorphisms with known geodesic expressions, improves Riemannian gradient-based optimisation by significantly reducing the number of required iterations and preserving mesh quality throughout the optimisation process.

 

This talk is hosted at RAL. 

Thu, 05 Feb 2026
16:00
Lecture Room 4

TBA

Tobias Berger
(University of Sheffield)
Thu, 05 Feb 2026

16:00 - 17:00
L5

Linking Path-Dependent and Stochastic Volatility Models

Cephas Svosve
((Mathematical Institute University of Oxford))
Abstract
We explore a link between stochastic volatility (SV) and path-dependent volatility (PDV) models. Using assumed density filtering, we map a given SV model into a corresponding PDV representation. The resulting specification is lightweight, improves in-sample fit, and delivers robust out-of-sample forecasts. We also introduce a calibration procedure for both SV and PDV models that produces standard errors for parameter estimates and supports joint calibration of SPX/VIX smile.


 

Fri, 06 Feb 2026

11:00 - 12:00
L4

Phase transition in collective dynamics

Prof Sara Merino-Aceituno
(Dept of Maths Universitat Wien)
Abstract

Certain models of collective dynamics exhibit deceptively simple patterns that are surprisingly difficult to explain. These patterns often arise from phase transitions within the underlying dynamics. However, these phase transitions can be explained only when one derives continuum equations from the corresponding individual-based models. In this talk, I will explore this subtle yet rich phenomenon and discuss advances and open problems.

Mon, 09 Feb 2026

14:00 - 15:00
Lecture Room 3

What makes an image realistic ?

Lucas Theis
Abstract

The last decade has seen tremendous progress in our ability to generate realistic-looking data, be it images, text, audio, or video. In this presentation, we will look at the closely related problem of quantifying realism, that is, designing functions that can reliably tell realistic data from unrealistic data. This problem turns out to be significantly harder to solve and remains poorly understood, despite its prevalence in machine learning and recent breakthroughs in generative AI. Drawing on insights from algorithmic information theory, we discuss why this problem is challenging, why a good generative model alone is insufficient to solve it, and what a good solution would look like. In particular, we introduce the notion of a universal critic, which unlike adversarial critics does not require adversarial training. While universal critics are not immediately practical, they can serve both as a North Star for guiding practical implementations and as a tool for analyzing existing attempts to capture realism.