Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
Tomorrow
12:45
Andrea Fontanella
Abstract

The horizon conjecture, proved in a case by case basis, states that every supersymmetric smooth horizon admits an sl(2, R) symmetry algebra. However it is unclear how string corrections modify the statement. In this talk I will present the analysis of supersymmetric near-horizon geometries in heterotic supergravity up to two loop order in sigma model perturbation theory, and show the conditions for the horizon to admit an sl(2, R) symmetry algebra. In the second part of the talk, I shall consider the inverse problem of determining all extreme black hole solutions associated to a prescribed near-horizon geometry. I will expand the horizon fields in the radial co-ordinate, the so-called moduli, and show that the moduli must satisfy a system of elliptic PDEs, which implies that the moduli space is finite dimensional.

The talk is based on arXiv:1605.05635 [hep-th] and arXiv:1610.09949 [hep-th].

 
  • String Theory Seminar
Tomorrow
14:15
Abstract

We present a numerical investigation of stochastic transport for the damped and driven incompressible 2D Euler fluid flows. According to Holm (Proc Roy Soc, 2015) and Cotter et al. (2017), the principles of transformation theory and multi-time homogenisation, respectively, imply a physically meaningful, data-driven approach for decomposing the fluid transport velocity into its drift and stochastic parts, for a certain class of fluid flows. We develop a new methodology to implement this velocity decomposition and then numerically integrate the resulting stochastic partial differential equation using a finite element discretisation. We show our numerical method is consistent.
Numerically, we perform the following analyses on this velocity decomposition. We first perform uncertainty quantification tests on the Lagrangian trajectories by comparing an ensemble of realisations of Lagrangian trajectories driven by the stochastic differential equation, and the Lagrangian trajectory driven by the ordinary differential equation. We then perform uncertainty quantification tests on the resulting stochastic partial differential equation by comparing the coarse-grid realisations of solutions of the stochastic partial differential equation with the ``true solutions'' of the deterministic fluid partial differential equation, computed on a refined grid. In these experiments, we also investigate the effect of varying the ensemble size and the number of prescribed stochastic terms. Further experiments are done to show the uncertainty quantification results "converge" to the truth, as the spatial resolution of the coarse grid is refined, implying our methodology is consistent. The uncertainty quantification tests are supplemented by analysing the L2 distance between the SPDE solution ensemble and the PDE solution. Statistical tests are also done on the distribution of the solutions of the stochastic partial differential equation. The numerical results confirm the suitability of the new methodology for decomposing the fluid transport velocity into its drift and stochastic parts, in the case of damped and driven incompressible 2D Euler fluid flows. This is the first step of a larger data assimilation project which we are embarking on. This is joint work with Colin Cotter, Dan Crisan, Darryl Holm and Igor Shevchenko.

 

  • Stochastic Analysis Seminar
Tomorrow
14:15
Amihay Hanany
Abstract

3d N=4 supersymmetric gauge theories provide a method for constructing HyperK\”ahler singularities, known as the Coulomb branch.
This method is complementary to the more traditional way of construction using HyperK\”ahler quotients, known in physics as the “Higgs branch”.
Out of all possible gauge theories there is an interesting subclass of quiver varieties, where the Coulomb branch has been studied in some detail.
Some examples are moduli spaces of classical and exceptional instantons and closures of nilpotent orbits. An interesting feature of Coulomb and Higgs branches is the phenomenon of "3d mirror symmetry” where for a pair of gauge theories, the Higgs branch and Coulomb branch exchange.
There is a large class of “mirror pairs” which I will discuss in some detail.

A topic of recent interest is the notion of implosions. I will argue that there is a simple operation on the quiver which leads to implosion. In other words, given a quiver such that its Coulomb branch is moduli space A, a simple operation of the quiver (making a bouquet) provides the implosion of A.
This has been tested on closures of nilpotent orbits of A type and on nilpotent cones of orthogonal groups and found to agree with the expected results.
If time permits, I will discuss isometries of Coulomb branches

  • Geometry and Analysis Seminar
Tomorrow
15:45
PHILIPP SCHOENBAUER
Abstract

We present a support theorem for subcritical parabolic stochastic partial differential equations (SPDEs) driven by Gaussian noises. In the spirit of the classical theorem by Stroock and Varadhan for ordinary stochastic differential equations, we identify the support of the solution to singular SPDEs with the closure of the union of the support of solutions to approximate and renormalized equations. We implement our approach in the setting of regularity structures and obtain a general result covering a range of singular SPDEs (including $\Phi^4_3$, $\Phi^d_2$, KPZ, PAM (2D+3D), SHE, ...). As a Corollary to our result we obtain the uniqueness of invariant measures for various interesting SPDEs. This is a joint work with Martin Hairer.

  • Stochastic Analysis Seminar
Tomorrow
16:00
Abstract

I will present some recent results obtained in collaboration with V. Banica and F. de la Hoz on the evolution of vortex filaments according to the so called Localized Induction Approximation  (LIA). This approximation is given by a non-linear geometric partial differential equation, that is known under the name of the Vortex Filament Equation (VFE). The aim of the talk is threefold. First, I will recall the Talbot effect of linear optics.  Secondly, I will give some explicit solutions of VFE where this Talbot effect is also present. Finally, I will consider some questions concerning the transfer of energy and momentum for these explicit solutions.

  • Partial Differential Equations Seminar
27 February 2018
12:00
Florian Klimm
Abstract

Protein interaction networks (PINs) allow the representation and analysis of biological processes in cells. Because cells are dynamic and adaptive, these processes change over time. Thus far, research has focused either on the static PIN analysis or the temporal nature of gene expression. By analysing temporal PINs using multilayer networks, we want to link these efforts. The analysis of temporal PINs gives insights into how proteins, individually and in their entirety, change their biological functions. We present a general procedure that integrates temporal gene expression information with a monolayer PIN to a temporal PIN and allows the detection of modular structure using multilayer modularity maximisation.

27 February 2018
12:00
to
13:15
Cecile Huneau
Abstract

In this talk, I will present the construction of a family of solutions to
vacuum Einstein equations which consist of an arbitrary number of high
frequency waves travelling in different directions. In the high frequency
limit, our family of solutions converges to a solution of Einstein equations
coupled to null dusts. This construction is an illustration of the so called
backreaction, studied by physicists (Isaacson, Burnet, Green, Wald...) : the
small scale inhomogeneities have an effect on the large scale dynamics in
the form of an energy impulsion tensor in the right-hand side of Einstein
equations. This is a joint work with Jonathan Luk (Stanford).

  • Quantum Field Theory Seminar
27 February 2018
14:00
Tabea Tscherpel
Abstract

The object of this talk is a class of generalised Newtonian fluids with implicit constitutive law.
Both in the steady and the unsteady case, existence of weak solutions was proven by Bul\'\i{}\v{c}ek et al. (2009, 2012) and the main challenge is the small growth exponent qq and the implicit law.
I will discuss the application of a splitting and regularising strategy to show convergence of FEM approximations to weak solutions of the flow. 
In the steady case this allows to cover the full range of growth exponents and thus generalises existing work of Diening et al. (2013). If time permits, I will also address the unsteady case.
This is joint work with Endre Suli.

  • Numerical Analysis Group Internal Seminar
27 February 2018
14:15
Alexander Stasinski
Abstract

Let $F$ be a non-Archimedean local field with ring of integers $\mathcal O$ and maximal ideal $\mathfrak p$. T. Shintani and G. Hill independently introduced a large class of smooth representations of $GL_N(\mathcal O)$, called regular representations. Roughly speaking they correspond to elements in the Lie algebra $M_N(\mathcal O)$ which are regular mod $\mathfrak p$ (i.e, having centraliser of dimension $N$). The study of regular representations of $GL_N(\mathcal O)$ goes back to Shintani in the 1960s, and independently and later, Hill, who both constructed the regular representations with even conductor, but left the much harder case of odd conductor open. In recent simultaneous and independent work, Krakovski, Onn and Singla gave a construction of the regular representations of $GL_N(\mathcal O)$ when the residue characteristic of $\mathcal O$ is not $2$.

In this talk I will present a complete construction of all the regular representations of $GL_N(\mathcal O)$. The approach is analogous to, and motivated by, the construction of supercuspidal representations of $GL_N(F)$ due to Bushnell and Kutzko. This is joint work with Shaun Stevens.
 

Pages

Add to My Calendar