Recent developments on the black hole information paradox have shown that Euclidean wormholes — so called “replica wormholes’’ — can dominate the von Neumann entropy as computed by a gravitational path integral, and that inclusion of these wormholes results in a unitary Page curve. This development raises some puzzles from the perspective of factorization, and has raised questions regarding what the gravitational path integral is computing. In this talk, I will focus on understanding the relationship between the gravitational path integral and the partition function via the gravitational free energy (more generally the generating functional). A proper computation of the free energy requires a replica trick distinct from the usual one used to compute the entropy. I will show that in JT gravity there is a regime where the free energy computed without replica wormholes is pathological. Interestingly, the inclusion of replica wormholes is not quite sufficient to resolve the pathology: an alternative analytic continuation is required. I will discuss the implications of this for various interpretations of the gravitational path integral (e.g. as computing an ensemble average) and also mention some parallels with spin glasses.

# Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this seriesThe join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

In rational conformal field theory, the sewing and factorization properties are probably the most important properties that conformal blocks satisfy. For special examples such as Weiss-Zumino-Witten models and minimal models, these two properties were proved decades ago (assuming the genus is ≤1 for the sewing theorem). But for general (strongly) rational vertex operator algebras (VOAs), their proofs were finished only very recently. In this talk, I will first motivate the definition of conformal blocks and VOAs using Segal's picture of CFT. I will then explain the importance of Sewing and Factorization Theorem in the construction of full rational conformal field theory.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

The binormal flow is a model for the dynamics of a vortex filament in a 3-D inviscid incompressible fluid. This flow is also related to the classical continuous Heisenberg model in ferromagnetism and to the 1-D cubic Schrödinger equation. In this lecture I will first talk about the state of the art of the binormal flow conjecture, as well as about mathematical methods and results for the binormal flow. Then I will introduce a class of solutions at the critical level of regularity that generate singularities in finite time and describe some of their properties. These results are joint work with Luis Vega.

We discuss a novel backward Ito-Ventzell formula and an extension of the Aleeksev-Gröbner interpolating formula to stochastic flows. We also present some natural spectral conditions that yield direct and simple proofs of time uniform estimates of the difference between the two stochastic flows when their drift and diffusion functions are not the same, yielding what seems to be the first results of this type for this class of anticipative models.

We illustrate the impact of these results in the context of diffusion perturbation theory, interacting diffusions and discrete time approximations.

The propagation of high-frequency electromagnetic waves can be analyzed using the geometrical optics approximation. In the case of large but finite frequencies, the geometrical optics approximation is no longer accurate, and polarization-dependent corrections at first order in wavelength modify the propagation of light in an inhomogenous medium via a spin-orbit coupling mechanism. This effect, known as the spin Hall effect of light, has been experimentally observed. In this talk I will discuss recent work which generalizes the spin Hall effect to the propagation of light and gravitational waves in inhomogenous spacetimes. This is based on joint work with Marius Oancea and Jeremie Joudioux.

Coronary heart disease is characterised by the formation of plaque on artery walls, restricting blood flow. If a plaque deposit ruptures, blood clot formation (thrombosis) rapidly occurs with the potential to fatally occlude the vessel within minutes. Von Willebrand Factor (vWF) is a shear-sensitive protein which has a critical role in blood clot formation in arteries. At the high shear rates typical in arterial constrictions (stenoses), vWF undergoes a conformation change, unfolding and exposing binding sites and facilitating rapid platelet deposition.

To understand the effect of stenosis geometry and blood flow conditions on the unfolding of vWF and subsequent platelet binding, we developed a continuum model for the initiation of thrombus formation by vWF in an idealised arterial stenosis. In this talk I will discuss modelling proteins in flow using viscoelastic fluid models, the insight asymptotic reductions can offer into this complex system and some of the challenges of studying fast arterial blood flows.

We consider a nonlinear flow on simplicial complexes related to the simplicial Laplacian, and show that it is a generalization of various consensus and synchronization models commonly studied on networks. In particular, our model allows us to formulate flows on simplices of any dimension, so that it includes edge flows, triangle flows, etc. We show that the system can be represented as the gradient flow of an energy functional, and use this to deduce the stability of various steady states of the model. Finally, we demonstrate that our model contains higher-dimensional analogues of structures seen in related network models.

arXiv link: https://arxiv.org/abs/2010.07421