Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
27 April 2018
12:00
Edriss Titi
Abstract

In this talk I will present a unified approach for the effect of fast rotation and dispersion as an averaging mechanism for, on the one hand, regularizing and stabilizing certain evolution equations, such as the Navier-Stokes and Burgers equations. On the other hand, I will  also present some results in which large dispersion acts as a destabilizing mechanism for the long-time dynamics of certain dissipative evolution equations, such as the Kuramoto-Sivashinsky equation. In addition, I will present some new results concerning two- and three-dimensional turbulent flows with high Reynolds numbers in periodic domains, which exhibit ``Landau-damping" mechanism due to large spatial average in the initial data.

  • PDE CDT Lunchtime Seminar
27 April 2018
12:00
Oliver Vipond
Abstract

Single parameter persistent homology has proven to be a useful data analytic tool and single parameter persistence modules enjoy a concise description as a barcode, a complete invariant. [Bubenik, 2012] derived a topological summary closely related to the barcode called the persistence landscape which is amenable to statistical analysis and machine learning techniques.

The theory of multidimensional persistence modules is presented in [Carlsson and Zomorodian, 2009] and unlike the single parameter case where one may associate a barcode to a module, there is not an analogous complete discrete invariant in the multiparameter setting. We propose an incomplete invariant derived from the rank invariant associated to a multiparameter persistence module, which generalises the single parameter persistence landscape in [Bubenik, 2012] and satisfies similar stability properties with respect to the interleaving distance. Our invariant naturally lies in a Banach Space and so is naturally endowed with a distance function, it is also well suited to statistical analysis since there is a uniquely defined mean associated to multiple landscapes. We shall present computational examples in the 2-parameter case using the RIVET software presented in [Lesnick and Wright, 2015].

  • Applied Algebra and Topology
27 April 2018
14:00
Abstract

Classical work of Jeffery from 1922 established how at low Reynolds number, ellipsoids in steady shear flow undergo periodic motion with non-uniform rotation rate, termed 'Jeffery orbits'.  I will present two problems where Jeffery orbits play a critical role in understanding the transport and aggregation of rod-shaped organisms.  I will discuss the trapping of motile chemotactic bacteria in high shear, and the sedimentation rate of negatively buoyant plankton. 

  • Mathematical Biology and Ecology Seminar
30 April 2018
12:45
Heather Harrington
Abstract

I will overview my research for a general math audience.

 First I will present the biological questions and motivate why systems biology needs computational algebraic biology and topological data analysis. Then I will present the mathematical methods I've developed to study these biological systems. Throughout I will provide examples.

 
 
  • String Theory Seminar
30 April 2018
14:15
CARLOS AMENDOLA
Abstract

The signature of a parametric curve is a sequence of tensors whose entries are iterated integrals, and they are central to the theory of rough paths in stochastic analysis.  For some special families of curves, such as polynomial paths and piecewise-linear paths, their parametrized signature tensors trace out algebraic varieties in the space of all tensors. We introduce these varieties and examine their fundamental properties, while highlighting their intimate connection to the problem of recovering a path from its signature. This is joint work with Peter Friz and Bernd Sturmfels. 

  • Stochastic Analysis Seminar
30 April 2018
15:45
Abstract

Stochastic analysis on a Riemannian manifold is a well developed area of research in probability theory.

We will discuss some recent developments on stochastic analysis on a manifold whose Riemannian metric evolves with time, a typical case of which is the Ricci flow. Familiar results such as stochastic parallel transport, integration by parts formula, martingale representation theorem, and functional inequalities have interesting extensions from

time independent metrics to time dependent ones. In particular, we will discuss an extension of Beckner’s inequality on the path space over a Riemannian manifold with time-dependent metrics. The classical version of this inequality includes the Poincare inequality and the logarithmic Sobolev inequality as special cases.

 

  • Stochastic Analysis Seminar
30 April 2018
15:45
Paolo Ghiggini
Abstract

I will prove that the knot Floer homology group
HFK-hat(K, g-1) for a genus g fibered knot K is isomorphic to a
variant of the fixed points Floer homology of an area-preserving
representative of its monodromy. This is a joint work with Gilberto
Spano.
 

Pages

Add to My Calendar