Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Mon, 23 Feb 2026
14:15
L4

A toric case of the Thomas-Yau conjecture

Jacopo Stoppa
(SISSA)
Abstract

We consider a class of Lagrangian sections L contained in certain Calabi-Yau Lagrangian fibrations (mirrors of toric weak Fano manifolds). We prove that a form of the Thomas-Yau conjecture holds in this case: L is isomorphic to a special Lagrangian section in this class if and only if a stability condition holds, in the sense of a slope inequality on objects in a set of exact triangles in the Fukaya-Seidel category. This agrees with general proposals by Li. On
surfaces and threefolds, under more restrictive assumptions, this result can be used to show a precise relation with Bridgeland stability, as predicted by Joyce. Based on arXiv:2505.07228 and arXiv:2508.17709.

Mon, 23 Feb 2026

16:30 - 17:30
L4

TBA

Prof. Fabio Ancona
(University of Padova)
Abstract

TBA

Tue, 24 Feb 2026
12:30
C4

The flow-induced compaction of visco-elastic and visco-plastic soft porous media

Emma Bouckley
(DAMPT, University of Cambridge)
Abstract

The flow of viscous fluid through a soft porous medium exerts drag on the matrix and induces non-uniform deformation. This behaviour can become increasingly complicated when the medium has a complex rheology, such that deformations exhibit elastic (reversible) and plastic (irreversible) behaviour, or when the rheology has a viscous component, making the response of the medium rate dependent. This is perhaps particularly the case when compaction is repeated over many cycles, or when additional forces (e.g. gravity or an external load) act simultaneously with flow to compact the medium, as in many industrial and geophysical applications. Here, we explore the interaction of viscous effects with elastic and plastic media from a theoretical standpoint, focussing on unidirectional compaction. We initially consider how the medium responds to the reversal of flow forcing when some of its initial deformation is non-recoverable. More generally, we explore how spatial variations in stress arising from fluid flow interact with the stress history of the sample when some element of its rheology is plastic and rate-dependent, and characterise the response of the medium depending on the nature of its constitutive laws for effective stress and permeability.

Tue, 24 Feb 2026
15:00
L6

TBC

Cameron Rudd
((Mathematical Institute University of Oxford))
Abstract

to follow

Tue, 24 Feb 2026
16:00
C3

TBC

Joachim Zacharias
(University of Glasgow)
Abstract

to follow

Thu, 26 Feb 2026
12:00
Lecture Room 4, Mathematical Institute

TBA

Alan Muriithi
Abstract

TBA

Thu, 26 Feb 2026

12:00 - 13:00
L3

Geometrically confined quantum systems

Robert Van Gorder
(University of Otago)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Dr Rob Van Gorder’s research focuses on how physical phenomena can be described, predicted, and controlled using applied mathematics. He works across mathematical modelling, analytical and asymptotic methods, and numerical simulation, applying this combination to a wide range of physical systems.

His interests in fluid dynamics centre on fundamental flow structures—such as vortices, bubbles, waves, and boundary layers—and how they evolve, persist, or break apart. He also studies spatial instabilities and pattern formation, investigating how mechanisms such as Turing and Benjamin–Feir instabilities extend to heterogeneous or non-autonomous systems arising in chemistry, physics, biology, and epidemiology.

In theoretical physics, Dr Van Gorder works on quantum mechanics, quantum fluids, and nonlinear waves, including the dynamics of Bose–Einstein condensates, quantised vortices in superfluid helium, and confined quantum systems. Across these areas, he aims to understand how nonlinear and quantum systems behave under realistic constraints and external forcing.

His recent publications include work on pattern formation and diffusive instabilities in Proceedings of the Royal Society A.

Abstract

 

You will likely be familiar with the notion of a hydrogen atom, having seen something about its discrete energy levels and orbitals at some point or another. This is an example of a quantum system. In this talk, we explore what transpires when taking a quantum system and placing it into a three-dimensional container having some prescribed geometry. In the limit where the container is large (relative to the natural lengthscale of the quantum system), its influence over the quantum system is negligible; yet, as the container is made small (comparable to the aforementioned lengthscale), geometric information intrinsic to the container plays an important role in determining the energy and orbital structure of the system. We describe how to do (numerically-assisted) perturbation theory in this small-container limit and then match it to the large-box regime, using a combination of these asymptotics and direct simulations to tell the story of geometrically confined quantum systems. Much of our focus will be on linear Schrödinger equations governing single-particle quantum systems; however, time permitting, we will briefly discuss how to do similar things to study geometrically confined nonlinear Schrödinger equations, with geometric confinement of Bose-Einstein condensates being a primary motivation. Geometric confinement of an attractive Bose-Einstein condensate can, for instance, modify the collapse threshold and enhance stability, with the particular choice of confining geometry shifting the boundary of instability, staving off the collapse which is prevalent in three-dimensional attractive condensates.

 

Thu, 26 Feb 2026

14:00 - 15:00
Lecture Room 3

TBA

Carolina Urzua Torres
(TU Delft)
Abstract

TBA

Thu, 26 Feb 2026
16:00
Lecture Room 4

TBA

Ana Caraiani
(Imperial College London)
Thu, 26 Feb 2026
17:00
L3

TBA

Amador Martin-Pizarro
(Universitat Freiburg)
Fri, 27 Feb 2026

11:00 - 12:00
L4

The life of a Turing Pattern

Dr Robert Van Gorder
(Department of Mathematics and Statistics University of Otago)
Abstract

We survey the life of a Turing pattern, from initial diffusive instability through the emergence of dominant spatial modes and to an eventual spatially heterogeneous pattern. While many mathematically ideal Turing patterns are regular, repeating in structure and remaining of a fixed length scale throughout space, in the real world there is often a degree of irregularity to patterns. Viewing the life of a Turing pattern through the lens of spatial modes generated by the geometry of the bounded space domain housing the Turing system, we discuss how irregularity in a Turing pattern may arise over time due to specific features of this space domain or specific spatial dependencies of the reaction-diffusion system generating the pattern.

Mon, 02 Mar 2026
14:15
L4

Metric wall-crossing

Ruadhai Dervan
(University of Warwick)
Abstract
Moduli spaces in algebraic geometry parametrise stable objects (bundles, varieties,...), and hence depend on a choice of stability condition. As one varies the stability condition, the moduli spaces vary in a well-behaved manner, through what is known as wall-crossing. As a general principle, moduli spaces admit natural Weil-Petersson metrics; I will state conjectures around the metric behaviour of moduli spaces as one varies the stability condition.
 
I will then prove analogues of these results in the model setting of symplectic quotients of complex manifolds, or equivalently geometric invariant theory. As one varies the input that determines a quotient, I will state results which explain the metric geometry of the resulting quotients (more precisely: Gromov-Hausdorff convergence towards walls, and metric flips across walls). As a byproduct of the approach, I will extend variation of geometric invariant theory to the setting of non-projective complex manifolds.
Mon, 02 Mar 2026

16:30 - 17:30
L4

TBA

Bruno Volzone
(Politecnico di Milano)
Abstract

TBA

Tue, 03 Mar 2026
14:00
TBC

TBC

Thorsten Heidersdorf
(Newcastle University)
Abstract

to follow

Tue, 03 Mar 2026

14:00 - 15:00
Online

TBC

Barbara Dembin
(University of Strasbourg)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Thu, 05 Mar 2026
12:00
Lecture Room 4, Mathematical Institute

TBA

Daniel Cortild
Abstract

TBA

Thu, 05 Mar 2026

12:00 - 13:00
L3

Driven interfacial hydrodynamics, and some physics-informed machine learning

Stuart Thomson
(University of Bristol)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Dr Stuart J. Thomson is an applied mathematician whose research sits at the intersection of mathematics, physics, and engineering. He works closely with table-top experiments to uncover how complex fluid and soft-matter systems give rise to novel emergent phenomena through nonlinear dynamics, many-body interactions, and geometric confinement. His interests include interfacial hydrodynamics, self-assembly, active and driven matter, interfacial robotics, transport phenomena, and fluid–structure interaction.

He is currently leading the project “The statistical physics of hydrodynamic random walkers: experiments and theory”, which combines experimental and theoretical approaches to understand how fluid-mediated interactions shape the behaviour of randomly moving microscopic walkers. Dr Thomson is based in the School of Engineering, Mathematics and Technology at the University of Bristol.

Abstract

In this talk I will present a few topics of recent interest that centre around the theme of “driven interfacial hydrodynamics”: fluid mechanical systems in which droplets and particles are self-propelled through interaction with the environment. I will also present some very recent work on using differentiable physics (a branch of physics-informed machine learning) to determine constitutive relations for highly plasticised metals.

This talk will contain elements of fluid dynamics, experimental mechanics, dynamical systems, statistical physics, and machine learning.

 

 

Thu, 05 Mar 2026

14:00 - 15:00
Lecture Room 3

Resonances as a computational tool

Katharina Schratz
(Sorbonne University)
Abstract

Speaker Katharina Schratz will talk about 'Resonances as a computational tool'

 

A large toolbox of numerical schemes for dispersive equations has been established, based on different discretization techniques such as discretizing the variation-of-constants formula (e.g., exponential integrators) or splitting the full equation into a series of simpler subproblems (e.g., splitting methods). In many situations these classical schemes allow a precise and efficient approximation. This, however, drastically changes whenever non-smooth phenomena enter the scene such as for problems at low regularity and high oscillations. Classical schemes fail to capture the oscillatory nature of the solution, and this may lead to severe instabilities and loss of convergence. In this talk I present a new class of resonance based schemes. The key idea in the construction of the new schemes is to tackle and deeply embed the underlying nonlinear  structure of resonances into the numerical discretization. As in the continuous case, these terms are central to structure preservation and offer the new schemes strong geometric properties at low regularity.

Thu, 05 Mar 2026
16:00
Lecture Room 4

TBA

Kevin Buzzard
(Imperial College London)
Thu, 05 Mar 2026

16:00 - 17:00
L5

TBA

Vlad Tuchilu
((Mathematical Institute University of Oxford))
Abstract

TBA

Fri, 06 Mar 2026

11:00 - 12:00
L4

Identifiability of stochastic and spatial models in mathematical biology

Dr Alexander Browning
(Dept of Mathematics University of Melbourne)
Abstract
Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Requisite to identifiability from a finite amount of noisy data is that model parameters are first structurally identifiable: a mathematical question that establishes whether multiple parameter values may give rise to indistinguishable model outputs. Approaches to assess structural identifiability of deterministic ordinary differential equation models are well-established, however tools for the assessment of the increasingly relevant stochastic and spatial models remain in their infancy. 
 
I provide in this talk an introduction to structural identifiability, before presenting new frameworks for the assessment of stochastic and partial differential equations. Importantly, I discuss the relevance of our methodology to model selection, and more the practical and aptly named practical identifiability of parameters in the context of experimental data. Finally, I conclude with a brief discussion of future research directions and remaining open questions.
Mon, 09 Mar 2026
15:30
L5

TBA

Sam Hughes
(Rheinische Friedrich-Wilhelms-Universität Bonn)
Mon, 09 Mar 2026

15:30 - 16:30
L3

Topology of smooth Gaussian fields

Dr. Michael McAuley
(Technological University Dublin)
Abstract

Gaussian fields arise in a variety of contexts in both pure and applied mathematics. While their geometric properties are well understood, their topological features pose deeper mathematical challenges. In this talk, I will begin by highlighting some motivating examples from different domains. I will then outline the classical theory that describes the geometric behaviour of Gaussian fields, before turning to more recent developments aimed at understanding their topology using the Wiener chaos expansion.

Tue, 10 Mar 2026
14:00
L6

TBC

Stefan Dawydiak
(University of Glasgow)
Abstract

to follow

Tue, 10 Mar 2026
15:30
L4

Towards a Bogomolov-Miyaoka-Yau inequality for symplectic 4-manifolds

Paul Feehan
(Rutgers)
Abstract

The Bogomolov-Miyaoka-Yau inequality for minimal compact complex surfaces of general type was proved in 1977 independently by Miyaoka, using methods of algebraic geometry, and by Yau, as an outgrowth of his proof of the Calabi conjectures. In this talk, we outline our program to prove the conjecture that symplectic 4-manifolds with $b^+>1$ obey the Bogomolov-Miyaoka-Yau inequality. Our method uses Morse theory on the gauge theoretic moduli space of non-Abelian monopoles, where the Morse function is a Hamiltonian for a natural circle action and natural two-form.  We shall describe generalizations of Donaldson’s symplectic subspace criterion (1996) from finite to infinite dimensions. These generalized symplectic subspace criteria can be used to show that the natural two-form is non-degenerate and thus an almost symplectic form on the moduli space of non-Abelian monopoles. This talk is based on joint work with Tom Leness and the monographs https://arxiv.org/abs/2010.15789  (to appear in AMS Mathematical Surveys and Monographs), https://arxiv.org/abs/2206.14710 and https://arxiv.org/abs/2410.13809

Tue, 10 Mar 2026
16:00
C3

TBC

Devarshi Mukherjee
((Mathematical Institute University of Oxford))
Abstract

to follow

Thu, 12 Mar 2026

12:00 - 13:00
L3

Extreme events in atmosphere and ocean via sharp large deviations estimates

Tobias Grafke
(University of Warwick)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Tobias Grafke's research focuses on developing numerical methods and mathematical tools to analyse stochastic systems. His work spans applications in fluid dynamics and turbulence, atmosphere–ocean dynamics, and biological and chemical systems. He studies the pathways and occurrence rates of rare and extreme events in complex realistic systems, develops numerical techniques for their simulation, and quantifies how random perturbations influence long-term system behaviour.

Abstract

Rare and extreme events are notoriously hard to handle in any complex stochastic system: They are simultaneously too rare to be reliably observable in experiments or numerics, but at the same time often too impactful to be ignored. Large deviation theory provides a classical way of dealing with events of extremely small probability, but generally only yields the exponential tail scaling of rare event probabilities. In this talk, I will discuss theory, and algorithms based upon it, that improve on this limitation, yielding sharp quantitative estimates of rare event probabilities from a single computation and without fitting parameters. Notably, these estimates require the computation of determinants of differential operators, which in relevant cases are not traceclass and require appropriate renormalization. We demonstrate that the Carleman--Fredholm operator determinant is the correct choice. Throughout, I will demonstrate the applicability of these methods to high-dimensional real-world systems, for example coming from atmosphere and ocean dynamics.