27 May 2014

17:00

Michael Collins

Abstract

In 1878, Jordan showed that if $G$ is a finite group of complex $n \times n$ matrices, then $G$ has a normal subgroup whose index in $G$ is bounded by a function of $n$ alone. He showed only existence, and early actual bounds on this index were far from optimal. In 1985, Weisfeiler used the classification of finite simple groups to obtain far better bounds, but his work remained incomplete when he disappeared. About eight years ago, I obtained the optimal bounds, and this work has now been extended to subgroups of all (complex) classical groups. I will discuss this topic at a “colloquium” level – i.e., only a rudimentary knowledge of finite group theory will be assumed.