Forthcoming events in this series


Tue, 07 May 2013

15:45 - 16:45
L3

Descent for n-Bundles

Jesse Wolfson
(Northwestern)
Abstract

Given a Lie group $G$, one can construct a principal $G$-bundle on a manifold $M$ by taking a cover $U\to M$, specifying a transition cocycle on the cover, and then descending the trivialized bundle $U \times G$ along the cocycle. We demonstrate the existence of an analogous construction for local $n$-bundles for general $n$. We establish analogues for simplicial Lie groupoids of Moore's results on simplicial groups; these imply that bundles for strict Lie $n$-groupoids arise from local $n$-bundles. We conclude by constructing a simple finite dimensional model of the Lie 2-group String($n$) using cohomological data.

Thu, 02 May 2013

14:00 - 15:00
L2

Sheafy matrix factorizations and bundles of quadrics

Ed Segal
(Imperial College London)
Abstract

A Landau-Ginzburg B-model is a smooth scheme $X$, equipped with a global function $W$. From $(X,W)$ we can construct a category $D(X,W)$, which is called by various names, including ‘the category of B-branes’. In the case $W=0$ it is exactly the derived category $D(X)$, and in the case that $X$ is affine it is the category of matrix factorizations of $W$. There has been a lot of foundational work on this category in recent years, I’ll describe the most modern and flexible approach to its construction.

I’ll then interpret Nick Addington’s thesis in this language. We’ll consider the case that $W$ is a quadratic form on a vector bundle, and the corresponding global version of Knorrer periodicity. We’ll see that interesting gerbe structures arise, related to the bundle of isotropic Grassmannians.

Tue, 30 Apr 2013

15:45 - 16:45
L2

Unlinking and unknottedness of monotone Lagrangian submanifolds

Jonny Evans
(University College London)
Abstract

I will explain some recent joint work with Georgios Dimitroglou Rizell in which we use moduli spaces of holomorphic discs with boundary on a monotone Lagrangian torus in ${\mathbb C}^n$ to prove that all such tori are smoothly isotopic when $n$ is odd and at least 5

Tue, 23 Apr 2013

15:45 - 16:45
L3

Equivariant classes, COHA, and quantum dilogarithm identities for Dynkin quivers II

Richard Rimanyi
(University of North Carolina)
Abstract

Consider non-negative integers assigned to the vertexes of an oriented graph. To this combinatorial data we associate a so-called quiver representation. We will study the geometry and the algebra of this representation, when the underlying un-oriented graph is of Dynkin type ADE.

A remarkable object we will consider is Kazarian's equivariant cohomology spectral sequence. The edge homomorphism of this spectral sequence defines the so-called quiver polynomials. These polynomials are generalizations of remarkable polynomials in algebraic combinatorics (Giambelli-Thom-Porteous, Schur, Schubert, their double, universal, and quantum versions). Quiver polynomials measure degeneracy loci of maps among vector bundles over a common base space. We will present interpolation, residue, and (conjectured) positivity properties of these polynomials.

The quiver polynomials are also encoded in the Cohomological Hall Algebra (COHA) associated with the oriented graph. This is a non-commutative algebra defined by Kontsevich and Soibelman in relation with Donaldson-Thomas invariants. The above mentioned spectral sequence has a structure identity expressing the fact that the sequence converges to explicit groups. We will show the role of this structure identity in understanding the structure of the COHA. The obtained identities are equivalent to Reineke's quantum dilogarithm identities associated to ADE quivers and certain stability conditions.

Tue, 23 Apr 2013

14:00 - 15:00
L1

Equivariant classes, COHA, and quantum dilogarithm identities for Dynkin quivers I

Richard Rimanyi
(University of North Carolina)
Abstract

Consider non-negative integers assigned to the vertexes of an oriented graph. To this combinatorial data we associate a so-called quiver representation. We will study the geometry and the algebra of this representation, when the underlying un-oriented graph is of Dynkin type ADE.

A remarkable object we will consider is Kazarian's equivariant cohomology spectral sequence. The edge homomorphism of this spectral sequence defines the so-called quiver polynomials. These polynomials are generalizations of remarkable polynomials in algebraic combinatorics (Giambelli-Thom-Porteous, Schur, Schubert, their double, universal, and quantum versions). Quiver polynomials measure degeneracy loci of maps among vector bundles over a common base space. We will present interpolation, residue, and (conjectured) positivity properties of these polynomials.

The quiver polynomials are also encoded in the Cohomological Hall Algebra (COHA) associated with the oriented graph. This is a non-commutative algebra defined by Kontsevich and Soibelman in relation with Donaldson-Thomas invariants. The above mentioned spectral sequence has a structure identity expressing the fact that the sequence converges to explicit groups. We will show the role of this structure identity in understanding the structure of the COHA. The obtained identities are equivalent to Reineke's quantum dilogarithm identities associated to ADE quivers and certain stability conditions.

Thu, 21 Feb 2013

15:30 - 16:30
L2

Centers and traces of categorified affine Hecke algebras (or, some tricks with coherent complexes on the Steinberg variety)

Anatoly Preygel
(UC Berkeley)
Abstract

The bounded coherent dg-category on (suitable versions of) the Steinberg stack of a reductive group G is a categorification of the affine Hecke algebra in representation theory.  We discuss how to describe the center and universal trace of this monoidal dg-category.  Many of the techniques involved are very general, and the description makes use of the notion of "odd micro-support" of coherent complexes.  This is joint work with Ben-Zvi and Nadler.

Thu, 14 Feb 2013

14:00 - 15:00
L3

Microlocal sheaf theory and symplectic geometry III

Stephane Guillermou
(Grenoble)
Abstract

Several recent works by D. Tamarkin, D. Nadler, E. Zaslow make use of the microlocal theory of sheaves of M. Kashiwara and P. Schapira to obtain results in symplectic geometry. The link between sheaves on a manifold $M$ and the symplectic geometry of the cotangent bundle of $M$ is given by the microsupport of a sheaf, which is a conic co-isotropic subset of the cotangent bundle. In the above mentioned works properties of a given Lagrangian submanifold $\Lambda$ are deduced from the existence of a sheaf with microsupport $\Lambda$, which we call a quantization of $\Lambda$.

In the third talk we will see that $\Lambda$ admits a canonical quantization if it is a "conification" of a compact exact Lagrangian submanifold of a

cotangent bundle. We will see how to use this quantization to recover results of Fukaya-Seidel-Smith and Abouzaid on the topology of $\Lambda$.

Wed, 13 Feb 2013

14:00 - 15:00
L1

Microlocal sheaf theory and symplectic geometry II

Stephane Guillermou
(Grenoble)
Abstract

Several recent works by D. Tamarkin, D. Nadler, E. Zaslow make use of the microlocal theory of sheaves of M. Kashiwara and P. Schapira to obtain results in symplectic geometry. The link between sheaves on a manifold $M$ and the symplectic geometry of the cotangent bundle of $M$ is given by the microsupport of a sheaf, which is a conic co-isotropic subset of the cotangent bundle. In the above mentioned works properties of a given Lagrangian submanifold $\Lambda$ are deduced from the existence of a sheaf with microsupport $\Lambda$, which we call a quantization of $\Lambda$.

In the second talk we will introduce a stack on $\Lambda$ by localization of the category of sheaves on $M$. We deduce topological obstructions on $\Lambda$ for the existence of a quantization.

Tue, 12 Feb 2013

15:45 - 16:45
L3

Microlocal sheaf theory and symplectic geometry I

Stephane Guillermou
(Grenoble)
Abstract

Several recent works by D. Tamarkin, D. Nadler, E. Zaslow make use of the microlocal theory of sheaves of M. Kashiwara and P. Schapira to obtain results in symplectic geometry. The link between sheaves on a manifold $M$ and the symplectic geometry of the cotangent bundle of $M$ is given by the microsupport of a sheaf, which is a conic co-isotropic subset of the cotangent bundle. In the above mentioned works properties of a given Lagrangian submanifold $\Lambda$ are deduced from the existence of a sheaf with microsupport $\Lambda$, which we call a quantization of $\Lambda$.

In the first talk we will see that the graph of a Hamiltonian isotopy admits a canonical quantization and we deduce a new proof of Arnold's non-displaceability conjecture.

Tue, 05 Feb 2013

15:45 - 16:45
L3

The space of positive Lagrangian submanifolds

Jake Solomon
(Jerusalem)
Abstract

A Lagrangian submanifold of a Calabi-Yau manifold is called positive if the real part of the holomorphic volume form restricted to it is positive. A Hamiltonian isotopy class of positive Lagrangian submanifolds admits a Riemannian metric with non-positive curvature. Its universal cover

admits a functional, with critical points special Lagrangians, that is strictly convex with respect to the metric. If time permits, I'll explain

how mirror symmetry relates the metric and functional to the infinite dimensional symplectic reduction picture of Atiyah, Bott, and Donaldson in

the context of the Kobayashi-Hitchin correspondence.

Tue, 08 Jan 2013

15:45 - 16:45
L3

Refined stable pair invariants on local Calabi-Yau threefolds

Jinwon Choi
(University of Illinois at Urbana Champaign)
Abstract

A refinement of the Pandharipande-Thomas stable pair invariants for local toric Calabi-Yau threefolds is defined by what we call the virtual Bialynicki-Birula decomposition. We propose a product formula for the generating function for the refined stable pair invariants extending the motivic product formula of Morrison, Mozgovoy, Nagao, and Szendroi for local ${\bf P}^1$. I will also describe how the proposed product formula is related to the wall crossing in my first talk. This is joint work with Sheldon Katz and Albrecht Klemm.

Tue, 08 Jan 2013

14:00 - 15:00
L3

On the moduli spaces of stable pairs on the projective plane

Jinwon Choi
(University of Illinois at Urbana Champaign)
Abstract

We study the birational relationship between the moduli spaces of $\alpha$-stable pairs and the moduli space $M(d,1)$ of stable sheaves on ${\bf P}^2$ with Hilbert polynomial $dm+1$. We explicitly relate them by birational morphisms when $d=4$ and $5$, and we describe the blow-up centers geometrically. As a byproduct, we obtain the Poincare polynomials of the moduli space of stable sheaves, or equivalently the refined BPS index. This is joint work with Kiryong Chung.

Tue, 27 Nov 2012

15:45 - 16:45
SR1

Formality of ordinary and twisted de Rham complex from derived algebraic geometry

Andrei Caldararu
(University of Wisconsin)
Abstract

Beautiful results of Deligne-Illusie, Sabbah, and Ogus-Vologodsky show that certain modifications of the de Rham complex (either the usual one, or twisted versions of it that appear in the study of the cyclic homology of categories of matrix factorizations) are formal in positive characteristic. These are the crucial steps in proving algebraic analogues of the Hodge theorem (again, either in the ordinary setting or in the presence of a twisting). I will present these results along with a new approach to understanding them using derived intersection theory. This is joint work with Dima Arinkin and Marton Hablicsek.

Tue, 20 Nov 2012

15:45 - 16:45
SR1

SEMINAR CANCELLED

Ed Segal
(Imperial)
Abstract

SEMINAR CANCELLED