Donaldson-Thomas invariants are fundamental deformation invariants of Calabi-Yau threefolds. We describe a recent conjecture of Oberdieck and Pandharipande which predicts that the (three variable) generating function for the Donaldson-Thomas invariants of K3xE is given by the reciprocal of the Igusa cusp form of weight 10. For each fixed K3 surface of genus g, the conjecture predicts that the corresponding (two variable) generating function is given by a particular meromorphic Jacobi form. We prove the conjecture for K3 surfaces of genus 0 and genus 1. Our computation uses a new technique which mixes motivic and toric methods.

# Past Algebraic and Symplectic Geometry Seminar

Rationally and polynomially convex domains in ${\mathbb C}^n$ are fundamental objects of study in the theory of functions of several complex variables. After defining and illustrating these notions, I will explain joint work with Y.Eliashberg giving a complete characterization of the possible topologies of such domains in complex dimension at least three. The proofs are based on recent progress in symplectic topology, most notably the h-principles for loose Legendrian knots and Lagrangian caps.

In a previous work, we introduced a refinement of Juhasz’s sutured Floer homology, and constructed a minus theory for sutured manifolds, called sutured Floer chain complex. In this talk, we introduce a new description of sutured manifolds as “tangles” and describe a notion of cobordism between them. Using this construction, we define a cobordism map between the corresponding sutured Floer chain complexes. We also discuss some possible applications. This is a joint work with Eaman Eftekhary.

I will explain an approach to Hamiltonian reduction using derived

symplectic geometry. Roughly speaking, the reduced space can be

presented as an intersection of two Lagrangians in a shifted symplectic

space, which therefore carries a natural symplectic structure. A slight

modification of the construction gives rise to quasi-Hamiltonian

reduction. This talk will also serve as an introduction to the wonderful

world of derived symplectic geometry where statements that morally ought

to be true are indeed true.

Using the fact that certain exotic spheres do not admit Lagrangian embeddings into $T^*{\mathcal S}^{n+1}$, as proven by Abouzaid and Ekholm-Smith, we produce non-trivial homotopy classes of the group of compactly supported symplectomorphisms of $T^*{\mathcal S}^n$. In particular, we show that the Hamiltonian isotopy class of the symplectic Dehn twist depends on the parametrisation used in the construction. Related results are also obtained for $T^*({\mathcal S}^n \times {\mathcal S}^1)$.

Joint work with Jonny Evans.