Past Combinatorial Theory Seminar

5 November 2013
14:30
Mark Jerrum
Abstract
<p>The Tutte polynomial of a graph $G$ is a two-variable polynomial $T(G;x,y)$, which encodes much information about~$G$. The number of spanning trees in~$G$, the number of acyclic orientations of~$G$, and the partition function of the $q$-state Potts model are all specialisations of the Tutte polynomial. Jackson and Sokal have studied the sign of the Tutte polynomial, and identified regions in the $(x,y)$-plane where it is ``essentially determined'', in the sense that the sign is a function of very simple characteristics of $G$, e.g., the number of vertices and connected components of~$G$. It is natural to ask whether the sign of the Tutte polynomial is hard to compute outside of the regions where it is essentially determined. We show that the answer to this question is often an emphatic ``yes'': specifically, that determining the sign is \#P-hard. In such cases, approximating the Tutte polynomial with small relative error is also \#P-hard, since in particular the sign must be determined. In the other direction, we can ask whether the Tutte polynomial is easy to approximate in regions where the sign is essentially determined. The answer is not straightforward, but there is evidence that it often ``no''. This is joint work with Leslie Ann Goldberg (Oxford).</p>
  • Combinatorial Theory Seminar
29 October 2013
14:30
Peter Keevash
Abstract
Perfect matchings are fundamental objects of study in graph theory. There is a substantial classical theory, which cannot be directly generalised to hypergraphs unless P=NP, as it is NP-complete to determine whether a hypergraph has a perfect matching. On the other hand, the generalisation to hypergraphs is well-motivated, as many important problems can be recast in this framework, such as Ryser's conjecture on transversals in latin squares and the Erdos-Hanani conjecture on the existence of designs. We will discuss a characterisation of the perfect matching problem for uniform hypergraphs that satisfy certain density conditions (joint work with Richard Mycroft), and a polynomial time algorithm for determining whether such hypergraphs have a perfect matching (joint work with Fiachra Knox and Richard Mycroft).
  • Combinatorial Theory Seminar
24 October 2013
11:00
Abstract
<p>Let $G$ be an addable minor-closed class of graphs. We prove that a zero-one law holds in monadic second-order logic (MSO) for connected graphs in G, and a convergence law in MSO for all graphs in $G$. For each surface $S$, we prove the existence of a zero-one law in first order logic (FO) for connected graphs embeddable in $S$, and a convergence law in FO for all graphs embeddable in $S$. Moreover, the limiting probability that a given FO sentence is satisfied is independent of the surface $S$. If $G$ is an addable minor-closed class, we prove that the closure of the set of limiting probabilities is a finite union of intervals, and it is the same for FO and MSO. For the class of planar graphs it consists of exactly 108 intervals. We give examples of non-addable classes where the results are quite different: for instance, the zero-one law does not hold for caterpillars, even in FO. This is joint work with Peter Heinig, Tobias Müller and Anusch Taraz. </p>
  • Combinatorial Theory Seminar
15 October 2013
14:30
Andrew Thomason
Abstract
<p>An independent set in an $r$-uniform hypergraph is a subset of the vertices that contains no edges. A container for the independent set is a superset of it. It turns out to be desirable for many applications to find a small collection of containers, none of which is large, but which between them contain every independent set. ("Large" and "small" have reasonable meanings which will be explained.) <br /> <br />Applications include giving bounds on the list chromatic number of hypergraphs (including improving known bounds for graphs), counting the solutions to equations in Abelian groups, counting Sidon sets, establishing extremal properties of random graphs, etc. <br /> <br />The work is joint with David Saxton.</p>
  • Combinatorial Theory Seminar
28 May 2013
16:30
Po-Shen Loh
Abstract
<p>The first application of Szemeredi's regularity method was the following celebrated Ramsey-Turan result proved by Szemeredi in 1972: any K_4-free graph on N vertices with independence number o(N) has at most (1/8 + o(1))N^2 edges. Four years later, Bollobas and Erdos gave a surprising geometric construction, utilizing the isodiametric inequality for the high dimensional sphere, of a K_4-free graph on N vertices with independence number o(N) and (1/8 - o(1)) N^2 edges. Starting with Bollobas and Erdos in 1976, several problems have been asked on estimating the minimum possible independence number in the critical window, when the number of edges is about N^2 / 8.</p> <p>These problems have received considerable attention and remained one of the main open problems in this area. &nbsp;More generally, it remains an important problem to determine if, for certain applications of the regularity method, alternative proofs exist which avoid using the regularity lemma and give better quantitative estimates. &nbsp;In this work, we develop new regularity-free methods which give nearly best-possible bounds, solving the various open problems concerning this critical window.</p> <p>Joint work with Jacob Fox and Yufei Zhao.</p>
  • Combinatorial Theory Seminar
28 May 2013
14:30
Christina Goldschmidt
Abstract
Consider the complete graph on n vertices with independent and identically distributed edge-weights having some absolutely continuous distribution. The minimum spanning tree (MST) is simply the spanning subtree of smallest weight. It is straightforward to construct the MST using one of several natural algorithms. Kruskal's algorithm builds the tree edge by edge starting from the globally lowest-weight edge and then adding other edges one by one in increasing order of weight, as long as they do not create any cycles. At each step of this process, the algorithm has generated a forest, which becomes connected on the final step. In this talk, I will explain how it is possible to exploit a connection between the forest generated by Kruskal's algorithm and the Erd\"os-R\'enyi random graph in order to prove that $M_n$, the MST of the complete graph, possesses a scaling limit as $n$ tends to infinity. In particular, if we think of $M_n$ as a metric space (using the graph distance), rescale edge-lengths by $n^{-1/3}$, and endow the vertices with the uniform measure, then $M_n$ converges in distribution in the sense of the Gromov-Hausdorff-Prokhorov distance to a certain random measured real tree. This is joint work with Louigi Addario-Berry (McGill), Nicolas Broutin (INRIA Paris-Rocquencourt) and Grégory Miermont (ENS Lyon).
  • Combinatorial Theory Seminar
21 May 2013
14:30
Paul Seymour
Abstract
The ``k-commodity flow problem'' is: we are given k pairs of vertices of a graph, and we ask whether there are k flows in the graph, where the ith flow is between the ith pair of vertices, and has total value one, and for each edge, the sum of the absolute values of the flows along it is at most one. We may also require the flows to be 1/2-integral, or indeed 1/p-integral for some fixed p. If the problem is feasible (that is, the desired flows exist) then it is still feasible after contracting any edge, so let us say a flow problem is ``critical'' if it is infeasible, but becomes feasible when we contract any edge. In many special cases, all critical instances have only two vertices, but if we ask for integral flows (that is, p = 1, essentially the edge-disjoint paths problem), then there arbitrarily large critical instances, even with k = 2. But it turns out that p = 1 is the only bad case; if p>1 then all critical instances have bounded size (depending on k, but independent of p), and the same is true if there is no integrality requirement at all. The proof gives rise to a very simple algorithm for the k edge-disjoint paths problem in 4-edge-connected graphs.
  • Combinatorial Theory Seminar
14 May 2013
14:30
Maria Chudnovsky
Abstract
Since graph-coloring is an NP-complete problem in general, it is natural to ask how the complexity changes if the input graph is known not to contain a certain induced subgraph H. Due to results of Kaminski and Lozin, and Hoyler, the problem remains NP-complete, unless H is the disjoint union of paths. Recently the question of coloring graphs with a fixed-length induced path forbidden has received considerable attention, and only a few cases of that problem remain open for k-coloring when k>=4. However, little is known for 3-coloring. Recently we have settled the first open case for 3-coloring; namely we showed that 3-coloring graphs with no induced 6-edge paths can be done in polynomial time. In this talk we will discuss some of the ideas of the algorithm. This is joint work with Peter Maceli and Mingxian Zhong.
  • Combinatorial Theory Seminar
7 May 2013
14:30
Joel Ouaknine
Abstract
<p>We consider two decision problems for linear recurrence sequences(LRS) over the integers, namely the Positivity Problem (are all terms of a given LRS positive?) and the Ultimate Positivity Problem (are all but finitely many terms of a given LRS positive?). We show decidability of both problems for LRS of order 5 or less, and for simple LRS (i.e. whose characteristic polynomial has no repeated roots) of order 9 or less. Moreover, we show by way of hardness that extending the decidability of either problem to LRS of order 6 would entail major breakthroughs in analytic number theory, more precisely in the field of Diophantine approximation of transcendental numbers.<br />This talk is based on a recent paper, available at<br />http://www.cs.ox.ac.uk/people/joel.ouaknine/publications/positivity13abs.html<br /> joint with James Worrell and Matt Daws.</p>
  • Combinatorial Theory Seminar

Pages