Past Combinatorial Theory Seminar

9 February 2016
14:30
Annika Heckel
Abstract

The chromatic number of the Erdős–Rényi random graph G(n,p) has been an intensely studied subject since at least the 1970s. A celebrated breakthrough by Bollobás in 1987 first established the asymptotic value of the chromatic number of G(n,1/2), and a considerable amount of effort has since been spent on refining Bollobás' approach, resulting in increasingly accurate bounds. Despite this, up until now there has been a gap of size O(1) in the denominator between the best known upper and lower bounds for the chromatic number of dense random graphs G(n,p) where p is constant. In contrast, much more is known in the sparse case.

In this talk, new upper and lower bounds for the chromatic number of G(n,p) where p is constant will be presented which match each other up to a term of size o(1) in the denominator. In particular, they narrow down the optimal colouring rate, defined as the average colour class size in a colouring with the minimum number of colours, to an interval of length o(1). These bounds were obtained through a careful application of the second moment method rather than a variant of Bollobás' method. Somewhat surprisingly, the behaviour of the chromatic number changes around p=1-1/e^2, with a different limiting effect being dominant below and above this value.

  • Combinatorial Theory Seminar
2 February 2016
14:30
Ben Green
Abstract

Fix some positive integer r. A famous theorem of Schur states that if you partition Z/pZ into r colour classes then, provided p > p_0(r) is sufficiently large, there is a monochromatic triple {x, y, x + y}. By essentially the same argument there is also a monochromatic triple {x', y', x'y'}. Recently, Tom Sanders and I showed that in fact there is a
monochromatic quadruple {x, y, x+y, xy}. I will discuss some aspects of the proof.

  • Combinatorial Theory Seminar
19 January 2016
14:30
Paul Seymour
Abstract

A "hole" in a graph is an induced subgraph which is a cycle of length > 3. The perfect graph theorem says that if a graph has no odd holes and no odd antiholes (the complement of a hole), then its chromatic number equals its clique number; but unrestricted graphs can have clique number two and arbitrarily large chromatic number. There is a nice question half-way between them - for which classes of graphs is it true that a bound on clique number implies some (larger) bound on chromatic number? Call this being "chi-bounded".

Gyarfas proposed several conjectures of this form in 1985, and recently there has been significant progress on them. For instance, he conjectured

  • graphs with no odd hole are chi-bounded (this is true);
  • graphs with no hole of length >100 are chi-bounded (this is true);
  • graphs with no odd hole of length >100 are chi-bounded; this is still open but true for triangle-free graphs.

We survey this and several related results. This is joint with Alex Scott and partly with Maria Chudnovsky.

  • Combinatorial Theory Seminar
24 November 2015
14:30
Abstract

Cycles are fundamental objects in graph theory. A spanning cycle in a graph is also called a Hamiltonian cycle. The celebrated Dirac's Theorem in 1952 shows that every graph on $n\ge 3$ vertices with minimum degree at least $n/2$ contains a Hamiltonian cycle. In recent years, there has been a strong focus on extending Dirac’s Theorem to hypergraphs. We survey the results along the line and mention some recent progress on this problem. Joint work with Yi Zhao.

  • Combinatorial Theory Seminar
17 November 2015
14:30
Abstract

What is the probability that the number of triangles in an Erdős–Rényi random graph exceeds its mean by a constant factor? In this talk, I will discuss some recent progress on this problem.

Already the order in the exponent of the tail probability was a long standing open problem until several years ago when it was solved by DeMarco and Kahn, and independently by Chatterjee. We now wish to determine the exponential rate of the tail probability. Thanks for the works of Chatterjee--Varadhan (dense setting) and Chatterjee--Dembo (sparse setting), this large deviations problem reduces to a natural variational problem. We solve this variational problem asymptotically, thereby determining the large deviation rate, which is valid at least for p > 1/n^c for some c > 0.

Based on joint work with Bhaswar Bhattacharya, Shirshendu Ganguly, and Eyal Lubetzky.

  • Combinatorial Theory Seminar
10 November 2015
14:30
Pedro Vieira
Abstract

We discuss a new setting of algorithmic problems in random graphs, studying the minimum number of queries one needs to ask about the adjacency between pairs of vertices of $G(n,p)$ in order to typically find a subgraph possessing a certain structure. More specifically, given a monotone property of graphs $P$, we consider $G(n,p)$ where $p$ is above the threshold probability for $P$ and look for adaptive algorithms which query significantly less than all pairs of vertices in order to reveal that the property $P$ holds with high probability. In this talk we focus particularly on the properties of containing a Hamilton cycle and containing paths of linear size. The talk is based on joint work with Asaf Ferber, Michael Krivelevich and Benny Sudakov.

  • Combinatorial Theory Seminar
3 November 2015
14:30
Bhargav Narayanan
Abstract

The ErdősKoRado theorem is a central result in extremal set theory which tells us how large uniform intersecting families can be. In this talk, I shall discuss some recent results concerning the 'stability' of this result. One possible formulation of the ErdősKoRado theorem is the following: if $n \ge 2r$, then the size of the largest independent set of the Kneser graph $K(n,r)$ is $\binom{n-1}{r-1}$, where $K(n,r)$ is the graph on the family of $r$-element subsets of $\{1,\dots,n\}$ in which two sets are adjacent if and only if they are disjoint. The following will be the question of interest. Delete the edges of the Kneser graph with some probability, independently of each other: is the independence number of this random graph equal to the independence number of the Kneser graph itself? I shall discuss an affirmative answer to this question in a few different regimes. Joint work with Bollobás and Raigorodskii, and Balogh and Bollobás.

  • Combinatorial Theory Seminar
27 October 2015
14:30
Abstract

A system of linear equations with integer coefficients is partition regular if, whenever the natural numbers are finitely coloured, there is a monochromatic solution. The finite partition regular systems were completely characterised by Rado in terms of a simple property of their matrix of coefficients. As a result, finite partition regular systems are very well understood.

Much less is known about infinite systems. In fact, only a very few families of infinite partition regular systems are known. I'll explain a relatively new method of constructing infinite partition regular systems, and describe how it has been applied to settle some basic questions in the area.

  • Combinatorial Theory Seminar
20 October 2015
14:30
Benny Sudakov
Abstract

A graph is quasirandom if its edge distribution is similar (in a well defined quantitative way) to that of a random graph with the same edge density. Classical results of Thomason and Chung-Graham-Wilson show that a variety of graph properties are equivalent to quasirandomness. On the other hand, in some known proofs the error terms which measure quasirandomness can change quite dramatically when going from one property to another which might be problematic in some applications.

Simonovits and Sós proved that the property that all induced subgraphs have about the expected number of copies of a fixed graph $H$ is quasirandom. However, their proof relies on the regularity lemma and gives a very weak estimate. They asked to find a new proof for this result with a better estimate. The purpose of this talk is to accomplish this.

Joint work with D. Conlon and J. Fox

  • Combinatorial Theory Seminar

Pages