Forthcoming events in this series


Wed, 23 Jun 2010

11:00 - 12:00
L3

Orientation Data and motivic DT invariants

Ben Davison
(Oxford)
Abstract

In this talk I will discuss "motivic" Donaldson-Thomas invariants, following the now not-so-recent paper of Kontsevich and Soibelman on this subject. I will, in particular, present some understanding of the mysterious notion of "orientation data," and present some recent work. I will of course do my best to make this talk "accessible," though if you don't know what a scheme or a category is it will probably make you cry.

Tue, 22 Jun 2010

11:00 - 12:00
L3

Deformations of Calibrated Submanifolds

Robert Clancy
(Oxford)
Abstract

This talk will begin with an introduction to calibrations and calibrated submanifolds. Calibrated geometry generalizes Wirtinger's inequality in Kahler geometry by considering k-forms which are analogous to the Kahler form. A famous one-line proof shows that calibrated submanifolds are volume minimizing in their homology class. Our examples of manifolds with a calibration will come from complex geometry and from manifolds with special holonomy.

We will then discuss the deformation theory of the calibrated submanifolds in each of our examples and see how they differ from the theory of complex submanifolds of Kahler manifolds.

Thu, 10 Jun 2010

12:00 - 13:00
SR1

Geometry with torsion and multi-moment maps

Thomas Bruun Madsen
(Odense)
Abstract

On any Hermitian manifold there is a unique Hermitian connection, called the Bismut connection, which has torsion a three-form. One says that the triplet consisting of the Hermitian structure together with the Bismut connection specifies a Kähler-with-torsion structure, or briefly a KT structure. If the torsion three-form is closed, we have a strong KT structure. The first part of this talk will discuss these notions and also address the problem of classifying strong KT structures.

\paragraph{} Despite their name, KT manifolds are generally not Kähler. In particular the fundamental two-form is not closed. If the KT structure is strong, we have instead a closed three-form. Motivated by the usefulness of moment maps in geometries involving symplectic forms, one may ask whether it is possible to construct a similar type of map, when we replace the symplectic form by a closed three-form. The second part of the talk will explain the construction of such maps, which are called multi-moment maps.

Thu, 03 Jun 2010

12:00 - 13:00
SR1

Cohomology of moduli spaces

Oscar Randal-Williams
(Oxford)
Abstract

I will discuss what is known about the cohomology of several moduli spaces coming from algebraic and differential geometry. These are: moduli spaces of non-singular curves (= Riemann surfaces) $M_g$, moduli spaces of nodal curves $\overline{M}_g$, moduli spaces of holomorphic line bundles on curves $Hol_g^k \to M_g$, and the universal Picard varieties $Pic^k_g \to M_g$. I will construct characteristic classes on these spaces, talk about their homological stability, and try to explain why the constructed classes are the only stable ones. If there is time I will also talk about the Picard groups of these moduli spaces.

Much of this work is due to other people, but some is joint with J. Ebert.

Thu, 27 May 2010

12:00 - 13:00
SR1

Anabelian Geometry

Frank Gounelas
(Oxford)
Abstract

This talk will largely be a survey and so will gloss over technicalities. After introducing the basics of the theory of the étale fundamental group I will state the theorems and conjectures related to Grothendieck's famous "anabelian" letter to Faltings. The idea is that the geometry and arithmetic of certain varieties is in some sense governed by their non-abelian (anabelian) fundamental group. Time permitting I will discuss current work in this area, particularly the work of Minhyong Kim relating spaces of (Hodge, étale) path torsors to finiteness theorems for rational points on curves leading to a conjectural proof of Faltings' theorem which has been much discussed in recent years.

Thu, 20 May 2010

12:00 - 13:00
SR1

Poisson quasi-Nijenhuis manifolds with background

Flavio Cordeiro
(Oxford)
Abstract

\paragraph{} Poisson quasi-Nijenhuis structures with background (PqNb structures) were recently defined and are one of the most general structures within Poisson geometry. On one hand they generalize the structures of Poisson-Nijenhuis type, which in particular contain the Poisson structures themselves. On the other hand they generalize the (twisted) generalized complex structures defined some years ago by Hitchin and Gualtieri. Moreover, PqNb manifolds were found to be appropriate target manifolds for sigma models if one wishes to incorporate certain physical features in the model. All these three reasons put the PqNb structures as a new and general object that deserves to be studied in its own right.

\paragraph{} I will start the talk by introducing all the concepts necessary for defining PqNb structures, making this talk completely self-contained. After a brief recall on Poisson structures, I will define Poisson-Nijenhuis and Poisson quasi-Nijenhuis manifolds and then move on to a brief presentation on the basics of generalized complex geometry. The PqNb structures then arise as the general structure which incorporates all the structures referred above. In the second part of the talk, I will define gauge transformations of PqNb structures and show how one can use this concept to construct examples of such structures. This material corresponds to part of the article arXiv:0912.0688v1 [math.DG].\\

\paragraph{} Also, if time permits, I will shortly discuss the appearing of PqNb manifolds as target manifolds of sigma models.

Thu, 13 May 2010

12:00 - 13:00
SR1

Moduli of sheaves and quiver sheaves

Vicky Hoskins
(Oxford)
Abstract

A moduli problem in algebraic geometry is essentially a classification problem, I will introduce this notion and define what it means for a scheme to be a fine (or coarse) moduli space. Then as an example I will discuss the classification of coherent sheaves on a complex projective scheme up to isomorphism using a method due to Alvarez-Consul and King. The key idea is to 'embed' the moduli problem of sheaves into the moduli problem of quiver representations in the category of vector spaces and then use King's moduli spaces for quiver representations. Finally if time permits I will discuss recent work of Alvarez-Consul on moduli of quiver sheaves; that is, representations of quivers in the category of coherent sheaves.

Thu, 06 May 2010

12:00 - 13:00
SR1

Hyperkähler Quotients and Metrics on Moduli Spaces

Markus Roeser
(Oxford)
Abstract

A Hyperkähler manifold is a riemannian manifold carrying three complex structures which behave like quaternions such that the metric is Kähler with respect to each of them. This means in particular that the manifold is a symplectic manifold in many different ways. In analogy to the Marsden-Weinstein reduction on a symplectic manifold, there is also a quotient construction for group actions that preserve the Hyperkähler structure and admit a moment map. In fact most known (non-compact) examples of hyperkähler manifolds arise in this way from an appropriate group action on a quaternionic vector space.

In the first half of the talk I will give the definition of a hyperkähler manifold and explain the hyperkähler quotient construction. As an important application I will discuss the moduli space of solutions to the gauge-theoretic "Self-duality equations on a Riemann surface", the space of Higgs bundles, and explain how it can be viewed as a hyperkähler quotient in an infinite-dimensional setting.

Thu, 29 Apr 2010

12:00 - 13:00
SR1

An introduction to the Ricci flow

Maria Buzano
(Oxford)
Abstract

The aim of this talk is to get a feel for the Ricci flow. The Ricci flow was introduced by Hamilton in 1982 and was later used by Perelman to prove the Poincaré conjecture. We will introduce the notions of Ricci flow and Ricci soliton, giving simple examples in low dimension. We will also discuss briefly other types of geometric flows one can consider.

Thu, 04 Mar 2010

12:00 - 13:00
SR1

Introduction to descent theory

Michael Groechenig
(Oxford)
Abstract

Descent theory is the art of gluing local data together to global data. Beside of being an invaluable tool for the working geometer, the descent philosophy has changed our perception of space and topology. In this talk I will introduce the audience to the basic results of scheme and descent theory and explain how those can be applied to concrete examples.

Thu, 25 Feb 2010

12:00 - 13:00
SR1

Knots, graphs, and the Alexander polynomial

Jessica Banks
(Oxford)
Abstract

In 2008, Juhasz published the following result, which was proved using sutured Floer homology.

Let $K$ be a prime, alternating knot. Let $a$ be the leading coefficient of the Alexander polynomial of $K$. If $|a|

Thu, 18 Feb 2010 12:00 -
Thu, 18 Mar 2010 13:00
SR1

Monodromy of Higgs bundles

Laura Schaposnik
(Oxford)
Abstract

We will consider the monodromy action on mod 2 cohomology for SL(2) Hitchin systems. We will study Copeland's approach to the subject and use his results to compute the monodromy action on mod 2 cohomology. An interpretation of our results in terms of geometric properties of fixed points of a natural involution on the moduli space is given.

Thu, 11 Feb 2010

12:00 - 13:00
SR1

An overview of the SYZ conjecture and calibrated geometry

Hwasung Mars Lee
(Oxford)
Abstract

We will present a physical motivation of the SYZ conjecture and try to understand the conjecture via calibrated geometry. We will define calibrated submanifolds, and also give sketch proofs of some properties of the moduli space of special Lagrangian submanifolds. The talk will be elementary and accessible to a broad audience.

Thu, 04 Feb 2010

12:00 - 13:00
SR1

Weighted projective varieties in higher codimension

Imran Qureshi
(Oxford)
Abstract

Many interesting classes of projective varieties can be studied in terms of their graded rings. For weighted projective varieties, this has been done in the past in relatively low codimension.

Let $G$ be a simple and simply connected Lie group and $P$ be a parabolic subgroup of $G$, then homogeneous space $G/P$ is a projective subvariety of $\mathbb{P}(V)$ for some\\

$G$-representation $V$. I will describe weighted projective analogues of these spaces and give the corresponding Hilbert series formula for this construction. I will also show how one may use such spaces as ambient spaces to construct weighted projective varieties of higher codimension.

Thu, 28 Jan 2010

13:15 - 14:15
SR1

Co-Higgs bundles II: fibrations and moduli spaces

Steven Rayan
(Oxford)
Abstract

After reviewing the salient details from last week's seminar, I will construct an explicit example of a spectral curve, using co-Higgs bundles of rank 2. The role of the spectral curve in understanding the moduli space will be made clear by appealing to the Hitchin fibration, and from there inferences (some of them very concrete) can be made about the structure of the moduli space. I will make some conjectures about the higher-dimensional picture, and also try to show how spectral varieties might live in that picture.

Thu, 21 Jan 2010

13:30 - 14:30
SR1

Co-Higgs bundles I: spectral curves

Steven Rayan
(Oxford)
Abstract

PLEASE NOTE THE CHANGE OF TIME FOR THIS WEEK: 13.30 instead of 12.

In the first of two talks, I will simultaneously introduce the notion of a co-Higgs vector bundle and the notion of the spectral curve associated to a compact Riemann surface equipped with a vector bundle and some extra data. I will try to put these ideas into both a historical context and a contemporary one. As we delve deeper, the emphasis will be on using spectral curves to better understand a particular moduli space.

Thu, 10 Dec 2009

12:00 - 13:00
SR1

Right inverses of the Kirwan map

Andratx Bellmunt
(Universitat de Barcelona / Oxford)
Abstract

We will begin by reviewing the construction of the symplectic quotient and the definition of the Kirwan map. Then we will give an overview of Kirwan's original proof of the surjectivity of this map and some generalizations of this result. Finally we will talk about the techniques that are being developed to construct right inverses for the Kirwan map.

Thu, 03 Dec 2009

12:00 - 13:00
SR1

Moduli Spaces of Sheaves on Toric Varieties

Martijn Kool
(Oxford)
Abstract

Extending work of Klyachko, we give a combinatorial description of pure equivariant sheaves on a nonsingular projective toric variety X and construct moduli spaces of such sheaves. These moduli spaces are explicit and combinatorial in nature. Subsequently, we consider the moduli space M of all Gieseker stable sheaves on X and describe its fixed point locus in terms of the moduli spaces of pure equivariant sheaves on X. Using torus localisation, one can then compute topological invariants of M. We consider the case X=S is a toric surface and compute generating functions of Euler characteristics of M. In case of torsion free sheaves, one can study wall-crossing phenomena and in case of pure dimension 1 sheaves one can verify, in examples, a conjecture of Katz relating Donaldson--Thomas invariants and Gopakumar--Vafa invariants.

Thu, 26 Nov 2009

12:00 - 13:00
SR1

Introduction to self-duality and instantons

Ana Ferreira
(Oxford)
Abstract

We will present a self-contained introduction to gauge theory, self-duality and instanton moduli spaces. We will analyze in detail the situation of charge 1 instantons for the 4-sphere when the gauge group is SU(2). Time permitting, we will also mention the ADHM construction for k-instantons.

Thu, 19 Nov 2009

12:00 - 13:00
SR1

Graph Foldings and Free Groups

Richard Wade
(Oxford)
Abstract

We describe John Stalling's method of studying finitely generated free groups via graphs and moves on graphs called folds. We will then discuss how the theory can be extended to study the automorphism group of a finitely generated free group.

Thu, 12 Nov 2009

12:00 - 13:00
SR1

Group valued moment maps, Loop groups and Dirac structures

Tom Baird
(Oxford)
Abstract

I will survey the theory of quasiHamiltonian spaces, a.k.a. group valued moment maps. In rough correspondence with historical development, I will first show how they emerge from the study of loop group representations, and then how they arise as a special case of "presymplectic realizations" in Dirac geometry.