Forthcoming events in this series


Mon, 23 Jan 2012

12:00 - 13:00
L3

Giant Gravitons in the ABJM Duality

Andrea Prinsloo
(University of Cape Town)
Abstract

I shall describe the construction of the four-brane giant graviton on $\mathrm{AdS}_4\times \mathbb{CP}^3$ (extended and moving in the complex projective space), which is dual to a subdeterminant operator in the ABJM model. This dynamically stable, BPS configuration factorizes at maximum size into two topologically stable four-branes (each wrapped on a different $\mathbb{CP}^2 \subset \mathbb{CP}^3$ cycle) dual to ABJM dibaryons. Our study of the spectrum of small fluctuations around this four-brane giant provides good evidence for a dependence in the spectrum on the size, $\alpha_0$, which is a direct result of the changing shape of the giant’s worldvolume as it grows in size. I shall finally comment upon the implications for operators in the non-BPS, holomorphic sector of the ABJM model.

Mon, 16 Jan 2012

12:00 - 13:00
L3

Generalized quark-antiquark potential of N=4 SYM at weak and strong coupling

Nadav Drukker
(King's College London)
Abstract

I will present a two-parameter family of Wilson loop operators in N = 4 supersymmetric Yang-Mills theory which interpolates smoothly between the 1/2 BPS line or circle and a pair of antiparallel lines. These observables capture a natural generalization of the quark-antiquark potential. These loops are calculated on the gauge theory side to second order in perturbation theory and in a semiclassical expansion in string theory to one-loop order. The resulting determinants are given in integral form and can be evaluated numerically for general values of the parameters or analytically in a systematic expansion around the 1/2 BPS configuration. I will comment about the feasibility of deriving all-loop results for these Wilson loops.

Mon, 28 Nov 2011

12:00 - 13:00
L3

Emergent IR CFTs in black hole physics

Joan Simon
(University of Edinburgh)
Abstract

I will discuss the dynamical emergence of IR conformal invariance describing the low energy excitations of near-extremal R-charged global AdS${}_5$ black holes. To keep some non-trivial dynamics in the sector of ${\cal N}=4$ SYM captured by the near horizon limits describing these IR physics, we are lead to study large N limits in the UV theory involving near vanishing horizon black holes. I will consider both near-BPS and non-BPS regimes, emphasising the differences in the local AdS${}_3$ throats emerging in both cases. I will compare these results with the predictions obtained by Kerr/CFT, obtaining a natural quantisation for the central charge of the near-BPS emergent IR CFT describing the open strings stretched between giant gravitons.

Mon, 21 Nov 2011

12:00 - 13:00
L3

Gravity duals of supersymmetric gauge theories on curved manifolds

James Sparks
(Oxford)
Abstract

In just the last year it has been realized that one can define supersymmetric gauge theories on non-trivial compact curved manifolds, coupled to a background R-symmetry gauge field, and moreover that expectation values of certain BPS operators reduce to finite matrix integrals via a form of localization. I will argue that a general approach to this topic is provided by the gauge/gravity correspondence. In particular, I will present several examples of supersymmetric gauge theories on different 1-parameter deformations of the three-sphere, which have a large N limit, together with their gravity duals (which are solutions to Einstein-Maxwell theory). The Euclidean gravitational partition function precisely matches a large N matrix model evaluation of the field theory partition function, as an exact \emph{function} of the deformation parameter.

Mon, 14 Nov 2011

12:00 - 13:00
L3

Scattering and Sequestering of Blow-Up Moduli in Local String Models

Lukas Witkowski
(Oxford)
Abstract

I will study the sequestering of blow-up fields through a CFT in a toroidal orbifold setting. In particular, I will examine the disk correlator between orbifold blow-up moduli and matter Yukawa couplings. Blow-up moduli appear as twist fields on the worldsheet which introduce a monodromy

condition for the coordinate field X. Thus I will focus on how the presence of twist field affects

the CFT calculation of disk correlators. Further, I will explain how the results are relevant to

suppressing soft terms to scales parametrically below the gravitino mass. Last, I want to explore the

relevance of our calculation for the case of smooth Calabi-Yaus.

Mon, 07 Nov 2011

12:00 - 13:00
L3

Landscape of consistent reductions with applications

Davide Cassani
(King's College London)
Abstract

Consistent truncations have proved to be powerful tools in the construction of new string theory solutions. Recently, they have been employed in the holographic description of condensed matter systems. In the talk, I will present a rich class of supersymmetric consistent truncations of higher-dimensional supergravity which are based on geometric structures, focusing on the tri-Sasakian case. Then I will discuss some applications, including a general result relating AdS backgrounds to solutions with non-relativistic Lifshitz symmetry.

Mon, 31 Oct 2011
12:00
L3

Three-Point Functions and Integrability: Weak/strong coupling match

Nikolay Gromov
(King's College London)
Abstract

We compute three-point functions of single trace operators in planar N = 4 SYM. We consider the limit where one of the operators is much smaller than the other two. We find a precise match between weak and strong coupling in the Frolov-Tseytlin classical limit for a very general class of classical solutions. To achieve this match we clarify the issue of back-reaction and identify precisely which three-point functions are captured by a classical computation.

Mon, 24 Oct 2011

12:00 - 13:00
L3

Bundles over nearly-Kähler homogeneous spaces in heterotic string theory

Michael Klaput
(Oxford)
Abstract

String compactifications incorporating non-vanishing H-flux have received increased attention over the past decade for their potential relevance to the moduli stabilization problem. Their internal spaces are in general not Kähler and, therefore, not Calabi-Yau. In the heterotic string an important technical problem is to construct gauge bundles on such spaces. I will present a method of how to explicitly construct gauge bundles over homogeneous nearly-Kähler manifolds of dimension six and discuss some of the arising implications for model building.

Mon, 17 Oct 2011

12:00 - 13:00
L3

A ten-dimensional action for non-geometric fluxes

David Andriot
(LMU Munich)
Abstract

Four-dimensional (4d) supergravities with non-geometric terms in their potential are very promising models for phenomenology. Indeed, these terms, generated by so-called non-geometric fluxes, generically help to obtain de Sitter vacua, or to stabilise moduli. Unfortunately, deriving these theories from a compactified ten-dimensional (10d) supergravity has not been achieved so far. One reason is that non-geometric fluxes do not seem to match any 10d field, and another reason is the appearance of global issues in 10d non-geometric configurations.

After reviewing some background material, we present in this talk a solution to the two previous issues. Thanks to a field redefinition, we make the non-geometric Q-flux appear in a 10d action, which only differs from the NSNS action by a total derivative. In addition, this new action is globally well-defined, at least in some examples, and one can then perform the dimensional reduction to recover the 4d non-geometric potential. We also mention an application to the heterotic string.

Based on 1106.4015.

Mon, 10 Oct 2011

12:00 - 13:00
L3

Superconformal Chern-Simons Theories and The AdS/CFT Correspondence

Arthur Lipstein
(Oxford)
Abstract

The study of superconformal Chern-Simons theories has led to a deeper understanding of M-theory and a new example of the AdS/CFT correspondence. In this talk, I will give an overview of superconformal Chern-Simons theories and their gravity duals. I will also describe some recent work on scattering amplitudes in these theories.

Mon, 13 Jun 2011

12:00 - 13:00
L3

3D-partition functions on the sphere: exact evaluation and mirror symmetry

Sara Pasquetti
(QMUL)
Abstract
Recently it has been shown that path integrals of N=4 theories on the three-sphere can be  localised  to matrix integrals. I will show how to obtain exact expressions  of partition functions by an explicit evaluation of these matrix integrals.
Mon, 06 Jun 2011

12:00 - 13:00
L3

String compactifications on toric varieties

Magdalena Larfors
(LMU Munich)
Abstract
In the absence of background fluxes and sources, compactifying string theories on Calabi-Yau three-folds leads to supersymmetric solutions. Turning on fluxes, e.g. to lift the moduli of the compactification, generically forces the three-fold to break the Calabi-Yau conditions, and instead fulfill the weaker geometrical condition of having a reduced structure group. In this talk I will demonstrate that three-dimensional smooth, compact, toric varieties can have reduced structure group, and thus be suitable for flux compactifications of string theory. Since the class of three-dimensional SCTV is large, this is promising for the construction of new, phenomenologically interesting string theory vacua.
Mon, 23 May 2011

12:00 - 13:00
L3

Trivertices and SU(2)'s

Amihay Hanany
(Imperial College)
Abstract
Given a graph with lines and 3-valent vertices, one can construct, using a simple dictionary, a Lagrangian that has N=2 supersymmetry in 3+1 dimensions. This is a construction which generalizes the notion of a quiver. The vacuum moduli space of such a theory is well known to give moment map equations for a HyperKahler manifold. We will discuss the class of hyperkahler manifolds which arise due to such a construction and present their special properties. The Hilbert Series of these spaces can be computed and turns out to be a function of the number of external legs and loops in the graph but not on its detailed structure. The corresponding SCFT consequence of this property indicates a crucial universality of many Lagrangians, all of which have the same dynamics. The talk is based on http://arXiv.org/pdf/1012.2119.
Mon, 16 May 2011

12:00 - 13:30
L3

Stability conditions on local P^2

Tom Bridgeland
(Oxford)
Abstract
This talk will be about spaces of stability conditions. I will start by recalling Mike Douglas' original work on Pi-stability for D-branes, and go on to explain a couple of of the main open questions in the subject. The second half of the talk will focus on an illustrative example, namely the case of the local projective plane.
Mon, 09 May 2011
12:00
L3

CANCELLED

Sara Pasquetti
(QMUL)
Mon, 21 Feb 2011

12:00 - 13:00
L3

TBA

James Sparks
(Oxford)
Mon, 14 Feb 2011

12:00 - 13:00
L3

TBA

Volker Braun
(Dublin Institute of Advanced Studies)
Mon, 07 Feb 2011

12:00 - 13:00
L3

Could Spacetime be Causal Structure Alone?

Fay Dowker
(Imperial College)
Abstract
Abstract: In the continuum the answer to the title question is "no". But if spacetime is atomic then the answer is yes. And it so happens that there is rather compelling circumstantial evidence that spacetime is actually discrete at the Planck scale. So now the question becomes, why if spacetime is discrete should it take the form of a discrete causal structure or *order*? The answer is that if you don't put causal order in fundamentally you don't get it out -- at least that's what known models of "emergent spacetime" indicate. If we want to make life easy for ourselves in quantum gravity, then, we should plump for discrete causal order (a "causal set") as the inner basis for spacetime. That, however raises the spectre of wild nonlocality. I will describe recent progress that shows that this wildness can be tamed. In particular we now have an approximately local action for causal sets and I'll explain what that means.
Mon, 31 Jan 2011

12:00 - 13:00
L3

Branes, Boxes and Black Holes

Toby Wiseman
(Imperial College)
Abstract
Abstract: I will begin by reviewing the use of Ricci flow and the associated Ricci soliton equation to provide constructive numerical algorithms to find static vacuum black holes. I will then describe recent progress to generalize these methods to stationary black holes. I will present new results found using these methods, firstly on stationary black holes in spherical boxes, and secondly, black holes localized on a Randall-Sundrum brane. The latter case hopefully resolves the validity of a phenomenologically striking and important conjecture, and also has relevance to AdS-CFT.
Mon, 24 Jan 2011

12:00 - 13:00
L3

Scattering Amplitudes and Holomorphic Linking in Twistor Space

Mathew Bullimore
(Oxford)
Abstract
Recently, there has been exciting progress in scattering amplitudes in supersymmetric gauge theories, one aspect of which is the remarkable duality between amplitudes and Wilson loops. I will explain how the complete planar S-matrix of N=4 super Yang-Mills theory is encoded in the complex analogue of a Wilson loop in holomorphic Chern-Simons theory on twistor space. The dynamics of the theory are encoded in loop equations, which describe deformations of the Wilson Loop and provide new insight into the nature of the amplitude-Wilson loop duality. The loop equations themselves yield powerful recursive methods for scattering amplitudes which are revealed as holomorphic skein relations by interpreting the Wilson loop as the complex analogue of a knot invariant. The talk will be based on the preprint arXiv:1101.1329.
Mon, 17 Jan 2011

12:00 - 13:30
L3

Generalised Geometry and M-theory

David Berman
(Queen Mary University of London)
Abstract
Abstract: We reformulate M-theory in terms of a generalised metric that combines the usual metric and the three form potential. The U-duality group is then a manifest symmetry.