A Very Short Introduction to Ptychographic Image Reconstruction
Abstract
I will present a very short introduction to the mathematics behind the scientific imaging technique known as ptychography, starting with a brief overview of the physics model and the various simplifications required, before moving on to the main ptychography inverse problem and the three principal classes of optimization algorithms currently being used in practice.
16:00
Graph and Chaos Theories Combined to Address Scrambling of Quantum Information (with Arkady Kurnosov and Sven Gnutzmann)
Abstract
Given a quantum Hamiltonian, represented as an $N \times N$ Hermitian matrix $H$, we derive an expression for the largest Lyapunov exponent of the classical trajectories in the phase space appropriate for the dynamics induced by $H$. To this end we associate to $H$ a graph with $N$ vertices and derive a quantum map on functions defined on the directed edges of the graph. Using the semiclassical approach in the reverse direction we obtain the corresponding classical evolution (Liouvillian) operator. Using ergodic theory methods (Sinai, Ruelle, Bowen, Pollicott\ldots) we obtain closed expressions for the Lyapunov exponent, as well as for its variance. Applications for random matrix models will be presented.
16:00
(joint seminar with String Theory) L-functions and conformal field theory.
Abstract
16:00