14:00
Multifold Schwinger-Keldysh EFT -- what I understand and what I don't
Abstract
The organisers asked me to give a brief talk on what I’ve been thinking about lately. So, I’ll tell you about Schwinger-Keldysh EFTs: an EFT framework for non-equilibrium dissipative systems such as hydrodynamics. These are built on a closed-time contour that runs forward and backward in time, allowing access to a variety of non-equilibrium observables. However, these EFTs fundamentally miss a wider class of observables, called out-of-time-ordered correlators (OTOCs), which are closely tied to quantum chaos. In this talk, I’ll share some thoughts on extending Schwinger-Keldysh EFTs to multifold contours that capture such observables. I’ll also touch on the discrete KMS symmetry of thermal systems, which generalises from Z_2 in the single-fold case to the dihedral group in the -fold case. With any luck, I’ll reach the point where I’m stuck and you can help me figure it out.
15:00
Operator algebras meet (generalized) global symmetries
Abstract
Two different, almost orthogonal approaches to QFT are: (1) the study of von Neumann algebras of local observables in flat space, and (2) the study of extended and topological defects in general spacetime manifolds. While naively the two focus on different aspects, it has been recently pointed out that some of the axioms of approach (1) clash with certain expectations from approach (2). In this JC talk, I’ll give a brief introduction to both approaches and review the recent discussion in [2008.11748], [2503.20863], and [2509.03589], explaining (i) what the tensions are, (ii) a recent proposal to solve them, and (iii) why it can be useful.