Universal spindles: D2's on $\Sigma$ and M5's on $\Sigma\times \mathbb{H}^3$
Couzens, C Stemerdink, K (13 Jul 2022)
A plethora of Type IIA embeddings for $d=5$ minimal supergravity
Couzens, C Macpherson, N Passias, A (30 Sep 2022)
D4-branes wrapped on four-dimensional orbifolds through consistent truncation
Couzens, C Kim, H Kim, N Lee, Y Suh, M (27 Oct 2022)
Tue, 07 May 2024
11:00
L5

Transportation-cost inequalities for nonlinear Gaussian functionals

Ioannis Gasteratos
(Imperial College, London)
Abstract

In this talk, we study concentration properties for laws of non-linear Gaussian functionals on metric spaces. Our focus lies on measures with non-Gaussian tail behaviour which are beyond the reach of Talagrand’s classical Transportation-Cost Inequalities (TCIs). Motivated by solutions of Rough Differential Equations and relying on a suitable contraction principle, we prove generalised TCIs for functionals that arise in the theory of regularity structures and, in particular, in the cases of rough volatility and the two-dimensional Parabolic Anderson Model. Our work also extends existing results on TCIs for diffusions driven by Gaussian processes.

Tue, 30 Apr 2024
11:00
L5

A priori bounds for subcritical fractional $\phi^4$ on $T^3$

Salvador Cesar Esquivel Calzada
(Universitat Munster)
Abstract

We study the stochastic quantisation for the fractional $\varphi^4$ theory. The model has been studied by Brydges, Mitter and Scopola in 2003 as a natural extension of $\phi^4$ theories to fractional sub-critical dimensions. The stochastic quantisation equation is given by the (formal) SPDE 

\[

(\partial_t + (-\Delta)^{s}) \varphi = - \lambda \varphi^3 + \xi

\]

where $\xi$ is a space-time white noise over the three dimensional torus. The equation is sub-critical for $s > \frac{3}{4}$.

 

We derive a priori estimates in the full sub-critical regime $s>\frac{3}{4}$. These estimates rule out explosion in finite time and they imply the existence of an invariant measure with a standard Krylov-Bogoliubov argument. 

Our proof is based on the strategy developed for the parabolic case $s=1$ in [Chandra, Moinat, Weber, ARMA 2023]. In order to implement this strategy here, a new Schauder estimate for the fractional heat operator is developed. Additionally, several algebraic arguments from [Chandra, Moinat, Weber, ARMA 2023] are streamlined significantly. 

 

This is joint work with Hendrik Weber (Münster). 

Tue, 28 May 2024
11:00
L5

Stochastic quantization associated with the ${¥rm{exp}(¥Phi)_{2}$-quantum field model driven by the space-time white noise

Hiroshi Kawabi
(Keio University)
Abstract

We consider a quantum field model with exponential interactions on the two-dimensional torus,  which is called the ${¥rm{exp}(¥Phi)_{2}$-quantum field model or Hoegh-Krohn’s model. In this talk, we discuss the stochastic quantization of this model. Combining key properties of Gaussian multiplicative chaos with a method for singular SPDEs, we construct a unique time-global solution to the corresponding parabolic stochastic quantization equation in the full $L_{1}$-regime $¥vert ¥alpha ¥vert<{¥sqrt{8¥pi}}$ of the charge parameter $¥alpha$. We also identify the solution with an infinite dimensional diffusion process constructed by the Dirichlet form approach. 

The main part of this talk is based on joint work with Masato Hoshino (Osaka University) and  Seiichiro Kusuoka (Kyoto University), and the full paper can be found on https://link.springer.com/article/10.1007/s00440-022-01126-z

An adaptive multi-level simulation algorithm for stochastic biological systems
Lester, C Yates, C Giles, M Baker, R (05 Sep 2014)
Extending the multi-level method for the simulation of stochastic biological systems
Lester, C Baker, R Giles, M Yates, C (12 Dec 2014)
Decision-making under uncertainty: using MLMC for efficient estimation of EVPPI
Giles, M Goda, T (18 Aug 2017)
Subscribe to