Tue, 13 Jun 2023

15:00 - 17:00
C2

Nonlinear Fokker-Planck equations modelling large networks of neurons

Dr Pierre Roux
((Oxford University))
Further Information

Sessions led by Dr Pierre Roux will take place on

30 May 2023 10:00 - 12:00 C2

6 June 2023 15:00 - 17:00 C2

8 June 2023 10:00 - 12:00 C2

13 June 2023 15:00 - 17:00 C2

Participants should have a good knowledge of Functional Analysis; basic knowledge about PDEs and distributions; and notions in probability. Should you be interested in taking part in the course, please send an email to @email.

Abstract

PhD_course_Roux_2.pdf

We will start from the description of a particle system modelling a finite size network of interacting neurons described by their voltage. After a quick description of the non-rigorous and rigorous mean-field limit results, we will do a detailed analytical study of the associated Fokker-Planck equation, which will be the occasion to introduce in context powerful general methods like the reduction to a free boundary Stefan-like problem, the relative entropy methods, the study of finite time blowup and the numerical and theoretical exploration of periodic solutions for the delayed version of the model. I will then present some variants and related models, like nonlinear kinetic Fokker-Planck equations and continuous systems of Fokker-Planck equations coupled by convolution.

Thu, 08 Jun 2023

10:00 - 12:00
C2

Nonlinear Fokker-Planck equations modelling large networks of neurons

Dr Pierre Roux
((Oxford University))
Further Information

Sessions led by Dr Pierre Roux will take place on

30 May 2023 10:00 - 12:00 C2

6 June 2023 15:00 - 17:00 C2

8 June 2023 10:00 - 12:00 C2

13 June 2023 15:00 - 17:00 C2

Participants should have a good knowledge of Functional Analysis; basic knowledge about PDEs and distributions; and notions in probability. Should you be interested in taking part in the course, please send an email to @email.

Abstract

PhD_course_Roux_1.pdf

We will start from the description of a particle system modelling a finite size network of interacting neurons described by their voltage. After a quick description of the non-rigorous and rigorous mean-field limit results, we will do a detailed analytical study of the associated Fokker-Planck equation, which will be the occasion to introduce in context powerful general methods like the reduction to a free boundary Stefan-like problem, the relative entropy methods, the study of finite time blowup and the numerical and theoretical exploration of periodic solutions for the delayed version of the model. I will then present some variants and related models, like nonlinear kinetic Fokker-Planck equations and continuous systems of Fokker-Planck equations coupled by convolution.

Tue, 06 Jun 2023

15:00 - 17:00
C2

Nonlinear Fokker-Planck equations modelling large networks of neurons

Dr Pierre Roux
((Oxford University) )
Further Information

Sessions led by Dr Pierre Roux will take place on

30 May 2023 10:00 - 12:00 C2

6 June 2023 15:00 - 17:00 C2

8 June 2023 10:00 - 12:00 C2

13 June 2023 15:00 - 17:00 C2

Participants should have a good knowledge of Functional Analysis; basic knowledge about PDEs and distributions; and notions in probability. Should you be interested in taking part in the course, please send an email to @email.

Abstract

PhD_course_Roux_0.pdf

We will start from the description of a particle system modelling a finite size network of interacting neurons described by their voltage. After a quick description of the non-rigorous and rigorous mean-field limit results, we will do a detailed analytical study of the associated Fokker-Planck equation, which will be the occasion to introduce in context powerful general methods like the reduction to a free boundary Stefan-like problem, the relative entropy methods, the study of finite time blowup and the numerical and theoretical exploration of periodic solutions for the delayed version of the model. I will then present some variants and related models, like nonlinear kinetic Fokker-Planck equations and continuous systems of Fokker-Planck equations coupled by convolution.

Tue, 30 May 2023

10:00 - 12:00
C2

Nonlinear Fokker-Planck equations modelling large networks of neurons

Dr Pierre Roux
((Oxford University))
Further Information
Sessions led by Dr Pierre Roux will take place on

30 May 2023 10:00 - 12:00 C2

6 June 2023 15:00 - 17:00 C2

8 June 2023 10:00 - 12:00 C2

13 June 2023 15:00 - 17:00 C2

Participants should have a good knowledge of Functional Analysis; basic knowledge about PDEs and distributions; and notions in probability. Should you be interested in taking part in the course, please send an email to @email.

Abstract

PhD_course_Roux.pdf

We will start from the description of a particle system modelling a finite size network of interacting neurons described by their voltage. After a quick description of the non-rigorous and rigorous mean-field limit results, we will do a detailed analytical study of the associated Fokker-Planck equation, which will be the occasion to introduce in context powerful general methods like the reduction to a free boundary Stefan-like problem, the relative entropy methods, the study of finite time blowup and the numerical and theoretical exploration of periodic solutions for the delayed version of the model. I will then present some variants and related models, like nonlinear kinetic Fokker-Planck equations and continuous systems of Fokker-Planck equations coupled by convolution.

On the notion of Laplacian bounds on $\mathrm{RCD}$ spaces and
applications
Gigli, N Mondino, A Semola, D Proceedings of the American Mathematical Society
Photo of Philip Maini lecturing

Our YouTube student lectures elicit all sorts of comments:

- What's with the crazy rolling boards?

- I knew this stuff at high school

- Didn't understand a thing

17 million views later, here's our latest: the Heat Equation with Philip Maini.

Fri, 10 Mar 2023

14:00 - 15:00
L4

Modelling the impact of rock heterogeneity on geological CO2 storage

Catrin Harris
(Imperial College)
Abstract

Permanent geological carbon storage will reduce greenhouse gas emissions and help mitigate climate change. Storage security is increased by CO2 capillary trapping in cm-to-m scale, layered rock heterogeneities; features that are ubiquitous across storage sites worldwide. This talk will outline the challenges associated with modelling the impact of small-scale heterogeneity on large scale saturation distributions and trapping during geological CO2 storage, including the difficulties in incorporating petrophysical and geological uncertainty into field-scale numerical models. Experimental results demonstrate the impact of cm-scale heterogeneity on pore-scale processes, which in turn influence large scale behaviour. Heterogeneity is shown to have a leading order impact on saturation distribution and storage capacity during geological CO2 storage.

Fri, 16 Jun 2023

14:00 - 15:00
L3

Positional information theory

Prof Karen Page
(Department of Mathematics University College London)
Abstract

We study the positional information conferred by the morphogens Sonic Hedgehog and BMP in neural tube patterning. We use the mathematics of information theory to quantify the information that cells use to decide their fate. We study the encoding, recoding and decoding that take place as the morphogen gradient is formed, triggers a nuclear response and determines cell fates using a gene regulatory network.

Fri, 09 Jun 2023

14:00 - 15:00
L3

Recent and past results on stochastically-modelled biochemical reaction networks

Professor Jinsu Kim
(POSTECH Pohang)
Abstract

When a biological system is modelled using a mathematical process, the next step is often to estimate the system parameters. Although computational and statistical techniques have been developed to estimate parameters for complex systems, this can be a difficult task. As a result, researchers have focused on revealing parameter-independent dynamical properties of a system. In this talk, we will discuss the study of qualitative behaviors of stochastic biochemical systems using reaction networks, which are graphical configurations of biochemical systems. The goal of this talk is to (1) introduce the basic modelling aspects of stochastically-modelled reaction networks and (2) discuss important results in this literature, including the random time representation, relationships between stochastic and deterministic models, and derivation of stability via network structures.

Subscribe to