Accurate forecasts of the effectiveness of interventions against Ebola may require models that account for variations in symptoms during infection
Hart, W Hochfilzer, L Cunniffe, N Lee, H Nishiura, H Thompson, R (2019)
Thu, 23 Feb 2023

14:00 - 15:00
Lecture Room 3

The Bernstein-Gelfand-Gelfand machinery and applications

Kaibo Hu
Abstract

In this talk, we first review the de Rham complex and the finite element exterior calculus, a cohomological framework for structure-preserving discretisation of PDEs. From de Rham complexes, we derive other complexes with applications in elasticity, geometry and general relativity. The derivation, inspired by the Bernstein-Gelfand-Gelfand (BGG) construction, also provides a general machinery to establish results for tensor-valued problems (e.g., elasticity) from de Rham complexes (e.g., electromagnetism and fluid mechanics). We discuss some applications and progress in this direction, including mechanics models and the construction of bounded homotopy operators (Poincaré integrals) and finite elements.

 

Thu, 09 Mar 2023

14:00 - 15:00
Lecture Room 3

Supersmoothness of multivariate splines

Michael Floater
Abstract

Polynomial splines over simplicial meshes in R^n (triangulations in 2D, tetrahedral meshes in 3D, and so on) sometimes have extra orders of smoothness at a vertex. This property is known as supersmoothness, and plays a role both in the construction of macroelements and in the finite element method.
Supersmoothness depends both on the number of simplices that meet at the vertex and their geometric configuration.

In this talk we review what is known about supersmoothness of polynomial splines and then discuss the more general setting of splines whose individual pieces are any infinitely smooth functions.

This is joint work with Kaibo Hu.

 

Thu, 27 Apr 2023

14:00 - 15:00
(This talk is hosted by Rutherford Appleton Laboratory)

All-at-once preconditioners for ocean data assimilation

Jemima Tabeart
(University of Oxford)
Abstract

Correlation operators are used in data assimilation algorithms
to weight the contribution of prior and observation information.
Efficient implementation of these operators is therefore crucial for
operational implementations. Diffusion-based correlation operators are popular in ocean data assimilation, but can require a large number of serial matrix-vector products. An all-at-once formulation removes this requirement, and offers the opportunity to exploit modern computer architectures. High quality preconditioners for the all-at-once approach are well-known, but impossible to apply in practice for the
high-dimensional problems that occur in oceanography. In this talk we
consider a nested preconditioning approach which retains many of the
beneficial properties of the ideal analytic preconditioner while
remaining affordable in terms of memory and computational resource.

Wed, 23 Feb 2022
14:00

TBA

Jemima Tabeart
Abstract

TBA

Thu, 02 Feb 2023
14:00
Rutherford Appleton Laboratory, nr Didcot

Reducing CO2 emissions for aircraft flights through complex wind fields using three different optimal control approaches

Cathie Wells
(University of Reading)
Abstract

Whilst we all enjoy travelling to exciting and far-off locations, the current climate crisis is making flights less and less attractive. But is there anything we can do about this? By plotting courses that make best use of atmospheric data to minimise aircraft fuel burn, airlines can not only save money on fuel, but also reduce emissions, whilst not significantly increasing flight times. In each case the route between London Heathrow Airport and John F Kennedy Airport in New York is considered.  Atmospheric data is taken from a re-analysis dataset based on daily averages from 1st December, 2019 to 29th February, 2020.

Initially Pontryagin’s minimum principle is used to find time minimal routes between the airports and these are compared with flight times along the organised track structure routes prepared by the air navigation service providers NATS and NAV CANADA for each day.  Efficiency of tracks is measured using air distance, revealing that potential savings of between 0.7% and 16.4% can be made depending on the track flown. This amounts to a reduction of 6.7 million kg of CO2 across the whole winter period considered.

In a second formulation, fixed time flights are considered, thus reducing landing delays.  Here a direct method involving a reduced gradient approach is applied to find fuel minimal flight routes either by controlling just heading angle or both heading angle and airspeed. By comparing fuel burn for each of these scenarios, the importance of airspeed in the control formulation is established.  

Finally dynamic programming is applied to the problem to minimise fuel use and the resulting flight routes are compared with those actually flown by 9 different models of aircraft during the winter of 2019 to 2020. Results show that savings of 4.6% can be made flying east and 3.9% flying west, amounting to 16.6 million kg of CO2 savings in total.

Thus large reductions in fuel consumption and emissions are possible immediately, by planning time or fuel minimal trajectories, without waiting decades for incremental improvements in fuel-efficiency through technological advances.
 

Tue, 24 Jan 2023
14:00
L3

Compatible finite elements for terrain following meshes

Karina Kowalczyk
Abstract

In this talk we are presenting a new approach for compatible finite element discretisations for atmospheric flows on a terrain following mesh. In classical compatible finite element discretisations, the H(div)-velocity space involves the application of Piola transforms when mapping from a reference element to the physical element in order to guarantee normal continuity. In the case of a terrain following mesh, this causes an undesired coupling of the horizontal and vertical velocity components. We are proposing a new finite element space, that drops the Piola transform. For solving the equations we introduce a hybridisable formulation with trace variables supported on horizontal cell faces in order to enforce the normal continuity of the velocity in the solution. Alongside the discrete formulation for various fluid equations we discuss solver approaches that are compatible with them and present our latest numerical results.

Thu, 09 Mar 2023

12:00 - 13:00
L1

TDA for the organization of regions in segmented images and more

Maria Jose Jimenez
(University of Seville)
Further Information

 

 

Abstract

Topological data analysis (TDA) comprises a set of techniques of computational topology that has had enormous growth in the last decade, with applications to a wide variety of fields, such as images,  biological data, meteorology, materials science, time-dependent data, economics, etc. In this talk, we will first have a walk through a typical pipeline in TDA, to move later to its adaptation to a specific context: the topological characterization of the spatial distribution of regions in a segmented image

First Betti number of the path homology of random directed graphs
Chaplin, T Journal of Applied and Computational Topology 1-47 (04 Dec 2022)
Thu, 02 Mar 2023

12:00 - 13:00
L1

The Plankton Hydrodynamic Playbook

Christophe Eloy
(IRPHE Marseille)
Further Information

 

Christophe is Professor of Fluid Mechanics at Centrale Marseille. His research activity is carried out at the IRPHE institute in Marseille.

'His research addresses various fundamental problems of fluid and solid mechanics, including fluid-structure interactions, hydrodynamic instabilities, animal locomotion, aeroelasticity, rotating flows, and plant biomechanics. It generally involves a combination of analytical modeling, experiments, and numerical work.' (Taken from his website here: https://www.irphe.fr/~eloy/).'

 

 

Abstract

By definition, planktonic organisms drift with the water flows. But these millimetric organisms are not necessarily passive; many can swim and can sense the surrounding flow through mechanosensory hairs. But how useful can be flow sensing in a turbulent environment? To address this question, we show two examples of smart planktonic behavior: (1) we develop a model where plantkters choose a swimming direction as a function of the velocity gradient to "surf on turbulence" and move efficiently upwards; (2) we show how a plankter measuring the velocity gradient may track the position of a swimming target from its hydrodynamic signature. 

Ernst Haeckel, Kunstformen der Natur (1904), Copepoda 

 

Subscribe to