Symmetry Enhancement, SPT Absorption, and Duality in QED_3
Abstract
Abelian gauge theories in 2+1 dimensions are very interesting QFTs: they are strongly coupled and exhibit non-trivial dynamics. However, they are somewhat more tractable than non-Abelian theories in 3+1 dimensions. In this talk, I will first review the known properties of fermions in 2+1 dimensions and some conjectures about QED_3 with a single Dirac fermion. I will then present the recent proposal from [arXiv:2409.17913] regarding the phase diagram of QED_3 with two fermions. The findings reveal surprising (yet compelling) features: while semiclassical analysis would suggest two trivially gapped phases and a single phase transition, the actual dynamics indicate the presence of two distinct phase transitions separated by a "quantum phase." This intermediate phase exists over a finite range of parameters in the strong coupling regime and is not visible semiclassically. Moreover, these phase transitions are second-order and exhibit symmetry enhancement. The proposal is supported by several non-trivial checks and is consistent with results from numerical bootstrap, lattice simulations, and extrapolations from the large-Nf expansion.
systems up to Newtonian singularity
15:30
Quivers and curves in higher dimensions
Abstract
Quiver Donaldson-Thomas invariants are integers determined by the geometry of moduli spaces of quiver representations. I will describe a correspondence between quiver Donaldson-Thomas invariants and Gromov-Witten counts of rational curves in toric and cluster varieties. This is joint work with Pierrick Bousseau.