Tue, 17 Jun 2025
14:00
L6

A Reconstruction Theorem for coadmissible D-cap-modules

Finn Wiersig
(National University of Singapore)
Abstract

Let X be a smooth rigid-analytic variety. Ardakov and Wadsley introduced the sheaf D-cap of infinite order differential operators on X, along with the category of coadmissible D-cap-modules. In this talk, we present a Riemann–Hilbert correspondence for these coadmissible D-cap-modules. Specifically, we interpret a coadmissible D-cap-module as a p-adic differential equation, explain what it means to solve such an equation, and describe how to reconstruct the module from its solutions.

Mon, 24 Feb 2025
16:30
L4

Stability of positive radial steady states for the parabolic Henon-Lane-Emden system

Paschalis Karageorgis
(Trinity College Dublin)
Abstract

When it comes to the nonlinear heat equation u_t - \Delta u = u^p, a sharp condition for the stability of positive radial steady states was derived in the classical paper by Gui, Ni and Wang.  In this talk, I will present some recent joint work with Daniel Devine that focuses on a more general system of reaction-diffusion equations (which is also also known as the parabolic Henon-Lane-Emden system).  We obtain a sharp condition that determines the stability of positive radial steady states, and we also study the separation property of these solutions along with their asymptotic behaviour at infinity.

Fri, 31 Jan 2025
12:00
L5

Holomorphic-topological theories: gauge theory applied to integrability

Lewis Cole
(Swansea)
Abstract

In recent years, a novel approach to studying integrable models has emerged which leverages a higher-dimensional gauge theory, specifically a holomorphic-topological theory. This new framework provides alternative methods for investigating quantum aspects of integrability and for constructing integrable models in more than two dimensions. This talk will review the foundations of this approach, its applications, and the exciting possibilities it opens up for future research in the field of integrable systems. 


 
Mon, 27 Jan 2025
13:00
L6

Spectrum of 4d near-BPS black holes and their dual CFT

Alice Lüscher
Abstract

 While extremal black hole microstates are reproduced by index calculations, the study of near-BPS black holes requires special care to account for quantum fluctuations. A semiclassical analysis indicates that the spectrum of such black holes has a large extremal degeneracy followed by a mass gap up to a continuum of non-BPS states. The inclusion of a theta angle term alters the properties of the spectrum (Witten effect shifting the mass gap and mixed 't Hooft anomaly). This journal club will study two papers by Toldo and Heydeman, [2412.03695] and [2412.03697] where they study 4d near-BPS black holes. As we shall see, a key point of their derivation is the reduction to 2d JT gravity. The dual CFTs are ABJM and some class R (non lagrangian) theories. Since these theories are strongly coupled, the gravity analysis offers a powerful tool to describe their specturm at finite temperature.

Thu, 30 Jan 2025
13:00
N3.12

Abstract Nonsense in Generalized Symmetries: (De-)Equivariantization and Gauging

Yuhan Gai
Abstract

I will introduce basic concepts from category theory that are relevant to the study of generalized symmetries. Then, I will focus on constructions known as equivariantization and de-equivariantization, which allow one to move between categories with a group G-action and those with a Rep(G)-action. I will also discuss their relation to the concept of gauging, if time permits.

 

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Supplementary Data from Mathematical Model-Driven Deep Learning Enables Personalized Adaptive Therapy
Gallagher, K Strobl, M Park, D Spoendlin, F Gatenby, R Maini, P Anderson, A (17 Jan 2025)
Sparse Sounds: Exploring Low-Dimensionality in Music Generation Model
Wang, S Liu, S volume 00 3224-3234 (18 Dec 2024)
Wed, 19 Feb 2025
17:00
Lecture Theatre 1

The Mathematics of Wound Healing - Tanniemola Liverpool

Tanniemola Liverpool
(University of Bristol)
Further Information

Wound healing is a highly conserved process required for survival of an animal after tissue damage. Tannie will describe how we are beginning to use a combination of mathematics, physics and biology to disentangle some of the organising principles behind the complex orchestrated dynamics that lead to wound healing.

Tanniemola Liverpool is a Professor in the Applied Mathematics Institute of the School of Mathematics at Bristol.

Please email @email to register to attend in person.

The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Wednesday 12 March at 5-6pm and any time after (no need to register for the online version).

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Tue, 20 May 2025
15:00
L6

Cohomology of subgroups of SL2

Henrique Souza
Abstract

Given an FP-infinity subgroup G of SL(2,C), we are interested in the asymptotic behavior of the cohomology of G with coefficients in an irreducible complex representation V of SL(2,C). We prove that, as the dimension of V grows, the dimensions of these cohomology groups approximate the L2-Betti numbers of G. We make no further assumptions on G, extending a previous result of W. Fu. This yields a new method to compute those Betti numbers for finitely generated hyperbolic 3-manifold groups. We will give a brief idea of the proof, whose main tool is a completion of the universal enveloping algebra of the p-adic Lie algebra sl(2, Zp).

Subscribe to