Tue, 26 Nov 2024
14:00
L6

Probabilistic laws on groups

Guy Blachar
(Weizmann Institute)
Abstract

Suppose a finite group satisfies the following property: If you take two random elements, then with probability bigger than 5/8 they commute. Then this group is commutative. 

Starting from this well-known result, it is natural to ask: Do similar results hold for other laws (p-groups, nilpotent groups...)? Are there analogous results for infinite groups? Are there phenomena specific to the infinite setup? 

We will survey known and new results in this area. New results are joint with Gideon Amir, Maria Gerasimova and Gady Kozma.

Superrotations at spacelike infinity
Fiorucci, A Matulich, J Ruzziconi, R Physical Review D volume 110 issue 6 l061502 (15 Sep 2024)
Probing the Connection between IceCube Neutrinos and MOJAVE AGN
Abbasi, R Ackermann, M Adams, J Agarwalla, S Aguilar, J Ahlers, M Alameddine, J Amin, N Andeen, K Argüelles, C Ashida, Y Athanasiadou, S Ausborm, L Axani, S Bai, X V., A Baricevic, M Barwick, S Bash, S Basu, V Bay, R Beatty, J Tjus, J Beise, J The Astrophysical Journal volume 973 issue 2 (25 Sep 2024)
Climate-based modelling and forecasting of dengue fever in three endemic departments of Peru
Mills, C Donnelly, C PLoS Neglected Tropical Diseases volume 18 issue 12 (04 Dec 2024)
Sorting capsules in microfluidic devices
Waters, S Journal of Fluid Mechanics volume 1000 (22 Nov 2024)
Simulating weak attacks in a new duplication–divergence model with node loss
Zhang, R Reinert, G Entropy volume 26 issue 10 (25 Sep 2024)
Tue, 12 Nov 2024
13:00
L6

Randomised Quantum Circuits for Practical Quantum Advantage

Bálint Koczor
(Mathematical Institute (University of Oxford))
Abstract

Quantum computers are becoming a reality and current generations of machines are already well beyond the 50-qubit frontier. However, hardware imperfections still overwhelm these devices and it is generally believed the fault-tolerant, error-corrected systems will not be within reach in the near term: a single logical qubit needs to be encoded into potentially thousands of physical qubits which is prohibitive.
 
Due to limited resources, in the near term, hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage but these need to resort to quantum error mitigation techniques. I will explain the basic concepts and introduce hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage. These have the potential to solve real-world problems---including optimisation or ground-state search---but they suffer from a large number of circuit repetitions required to extract information from the quantum state. I will detail a range of application areas of randomised quantum circuits, such as quantum algorithms, classical shadows, and quantum error mitigation introducing recent results that help lower the barrier for practical quantum advantage.

 

Tue, 05 Nov 2024
16:00
L6

Random growth models with half space geometry

Jimmy He
(Ohio State University)
Abstract
Random growth models in 1+1 dimension capture the behavior of interfaces evolving in the presence of noise. These models are expected to exhibit universal behavior including intriguing occurrences of random matrix distributions, but we are still far from proving such results even in relatively simple models. A key development which has led to recent progress is the discovery of exact formulas for certain models with a rich algebraic structure. I will discuss some of these results, with a focus on models where a single boundary wall is present, as well as applications to other areas of probability.



 

Utilising an in silico model to predict outcomes in senescence-driven acute liver injury
Ashmore-Harris, C Antonopoulou, E Aird, R Man, T Finney, S Speel, A Lu, W Forbes, S Gadd, V Waters, S npj Regenerative Medicine volume 9 issue 1 (30 Sep 2024)
Subscribe to