Forthcoming events in this series


Thu, 29 Oct 2009

16:30 - 17:30
DH 1st floor SR

Frank-Read sources and the yield of anisotropic cubic crystals

Steve Fitzgerald
(EURATOM/UKAEA Fusion Association (Oxford))
Abstract

Frank-Read sources are among the most important mechanisms of dislocation multiplication,

and their operation signals the onset of yield in crystals. We show that the critical

stress required to initiate dislocation production falls dramatically at high elastic

anisotropy, irrespective of the mean shear modulus. We hence predict the yield stress of

crystals to fall dramatically as their anisotropy increases. This behaviour is consistent

with the severe plastic softening observed in alpha-iron and ferritic steels as the

alpha − gamma martensitic phase transition is approached, a temperature regime of crucial

importance for structural steels designed for future nuclear applications.

Thu, 15 Oct 2009
16:30
DH 1st floor SR

Faraday waves in Bose-Einstein condensates

Ricardo Carretero
(San Diego State Univ)
Abstract

Traditional Faraday waves appear in a layer of liquid that is shaken vertically. These patterns can take the form of horizontal stripes, close-packed hexagons, or even squares or quasiperiodic patterns. Faraday waves are commonly observed as fine stripes on the surface of wine in a wineglass that is ringing like a bell when periodically forced.

Motivated by recent experiments on Faraday waves in Bose-Einstein condensates we investigate both analytically and numerically the dynamics of cigar-shaped Bose-condensed gases subject to periodic modulation of the strength of the transverse confinement's trap.

We offer a fully analytical explanation of the observed parametric resonance yielding the pattern periodicity versus the driving frequency. These results, corroborated by numerical simulations, match extremely well with the experimental observations.

Thu, 18 Jun 2009

16:30 - 17:30
DH 1st floor SR

Sea Ice Growth

Mark McGuinness
(University of Limerick)
Abstract

Platelet ice may be an important component of Antarctic land-fast sea

ice. Typically, it is found at depth in first-year landfast sea ice

cover, near ice shelves. To explain why platelet ice is not commonly

observed at shallower depths, we consider a new mechanism. Our

hypothesis is that platelet ice eventually appears due to the sudden

deposition of frazil ice against the fast ice-ocean interface,

providing randomly oriented nucleation sites for crystal growth.

Brine rejected in plumes from land-fast ice generates stirring

sufficient to prevent frazil ice from attaching to the interface,

forcing it to remain in suspension until ice growth rate and brine

rejection slow to the point that frazil can stick. We calculate a

brine plume velocity, and match this to frazil rise velocity.

We consider both laminar and turbulent environments. We find that

brine plume velocities are generally powerful enough to prevent most

frazil from sticking in the case of laminar flow, and that in the

turbulent case there may be a critical ice thickness at which most

frazil suddenly settles.

Thu, 11 Jun 2009

16:30 - 17:30
DH 1st floor SR

Noise stabilized transients and multiple scales

Rachel Kuske
(UBC)
Abstract

Transient or unstable behavior is often ignored in considering long time dynamics in the deterministic world. However, stochastic effects can change the picture dramatically, so that the transients can dominate the long range behavior.

Coherence resonance is one relatively simple example of this transformation, and we consider others such as noise-driven synchronization in networks, recurrence of diseases, and stochastic stabilization in systems with delay.

The challenge is to identify common features in these phenomena, leading to new approaches for other systems of this type. Some recurring themes include the influence of multiple time scales, cooperation of both discrete and continuous aspects in the dynamics, and the remnants of underlying bifurcation structure visible through the noise.

Thu, 04 Jun 2009

16:30 - 17:30
DH 1st floor SR

Scattering waves in elastic waveguides

Karima Khusnutdinova
(Loughborough)
Abstract

Layered (or laminated) structures are increasingly used in modern industry (e.g., in microelectronics and aerospace engineering). Integrity of such structures is mainly determined by the quality of their interfaces: poor adhesion or delamination can lead to a catastrophic failure of the whole structure. Can nonlinear waves help us to detect such defects? We study the dynamics of a nonlinear longitudinal bulk strain wave in a split, layered elastic bar, made of nonlinearly hyperelastic Murnaghan material. We consider a symmetric two-layered bar and assume that there is perfect interface for x 0, where the x-axis is directed along the bar. Using matched asymptotic multiple-scales expansions and the integrability theory of the KdV equation by the Inverse Scattering Transform, we examine scattering of solitary waves and show that the defect causes generation of more than one secondary solitary waves from a single incident soliton and, thus, can be used to detect the defect. The theory is supported by experimental results. Experiments have been performed in the Ioffe Institute in St. Petersburg (Russia), using holographic interferometry and laser induced generation of an incident compression solitary wave in two- and three-layered polymethylmethacrylate (PMMA) bars, bonded using ethyl cyanoacrylate-based (CA) adhesive.

Thu, 28 May 2009

16:30 - 17:30
DH 1st floor SR

Radiated Fields, Energy-Release Rate and Evolution Equation for a Half-Space Eshelby Inclusion

Xanthippi Markenscoff
(California)
Abstract

In the context of the linear theory of elasticity with eigenstrains, the radiated fields,

including inertia effects, and the energy-release rates (“driving forces”) of a spherically

expanding and a plane inclusion with constant dilatational eigenstrains are

calculated. The fields of a plane boundary with dilatational eigenstrain moving

from rest in general motion are calculated by a limiting process from the spherical

ones, as the radius tends to infinity, which yield the time-dependent tractions

that need to be applied on the lateral boundaries for the global problem to be

well-posed. The energy-release rate required to move the plane inclusion boundary

(and to create a new volume of eigenstrain) in general motion is obtained here for

a superposed loading of a homogeneous uniaxial tensile stress. This provides the

relation of the applied stress to the boundary velocity through the energy-rate balance

equation, yielding the “equation of motion” (or “kinetic relation”) of the plane

boundary under external tensile axial loading. This energy-rate balance expression

is the counterpart to the Peach-Koehler force on a dislocation plus the “self-force”

of the moving dislocation.

Thu, 21 May 2009

16:30 - 17:30
DH 1st floor SR

Localized structures in elastic sheets: From a ruck in a rug to flexible electronics

Dominic Vella
(Cambridge)
Abstract

An elastic sheet will buckle out of the plane when subjected to an in-plane compression. In the simplest systems the typical lengthscale of the buckled structure is that of the system itself but with additional physics (e.g. an elastic substrate) repeated buckles with a well-defined wavelength may be seen. We discuss two examples in which neither of these scenarios is realized: instead a small number of localized structures are observed with a size different to that of the system itself. The first example is a heavy sheet on a rigid floor - a ruck in a rug. We study the static properties of these rucks and also how they propagate when one end of the rug is moved quickly. The second example involves a thin film adhered to a much softer substrate. Here delamination blisters are formed with a well-defined size, which we characterize in terms of the material properties of the system. We then discuss the possible application of these model systems to real world problems ranging from the propagation of slip pulses in earthquakes to the manufacture of flexible electronic devices."

Thu, 14 May 2009

16:30 - 17:30
DH 1st floor SR

Applications of Sparse Signal Recovery for High-Dimensional Data

Nicolai Meinshausen
(Department of Statistics, Oxford)
Abstract

I will discuss the so-called Lasso method for signal recovery for high-dimensional data and show applications in computational biology, machine learning and image analysis.

Thu, 12 Mar 2009
16:30
DH 1st floor SR

On the Moffatt-Pukhnachov problem

Mark Kelmanson
(University of Leeds)
Abstract

The classic coating-flow problem first studied experimentally by Moffat and asymptotically by Pukhnachov in 1977 is reconsidered in the framework of multiple-timescale asymptotics. Two-timescale approximations of the height of the thin film coating a rotating horizontal circular cylinder are obtained from an asymptotic analysis, in terms of small gravitational and capillary parameters, of Pukhnachov's nonlinear evolution for the film thickness. The transition, as capillary effects are reduced, from smooth to shock-like solutions is examined, and interesting large-time dynamics in this case are determined via a multiple-timescale analysis of a Kuramoto-Sivashinsky equation. A pseudo-three-timescale method is proposed and demonstrated to improve the accuracy of the smooth solutions, and an asymptotic analysis of a modified Pukhnachov's equation, one augmented by inertial terms, leads to an expression for the critical Reynolds number above which the steady states first analysed by Moffatt and Pukhnachov cannot be realised. As part of this analysis, some interesting implications of the effects of different scalings on inertial terms is discussed. All theoretical results are validated by either spectral or extrapolated numerics.

Thu, 05 Mar 2009

16:30 - 17:30

Free surface flows in the presence of electric fields

Jean-Marc Vanden-Broeck
(UCL)
Abstract

GIBSON BUILDING COMMON ROOM 2ND FLOOR

(Coffee and Cakes in Gibson Meeting Room - opposite common room)

The effects of electric fields on nonlinear free surface flows are investigated. Both inviscid and Stokes flows are considered.

Fully nonlinear solutions are computed by boundary integral equation methods and weakly nonlinear solutions are obtained by using long wave asymptotics and lubrication theory. Effects of electric fields on the stability of the flows are discussed. In addition applications to coating flows are presented.

Thu, 26 Feb 2009
16:30
DH 1st floor SR

Instabilities of flows through deformable tubes and channels

Oliver Jensen
(Nottingham)
Abstract

I will provide an overview of theoretical models aimed at understanding how self-excited oscillations arise when flow is driven through a finite-length flexible tube or channel. This problem is approached using a hierarchy of models, from one to three spatial dimensions, combining both computational and asymptotic techniques. I will explain how recent work is starting to shed light on the relationship between local and global instabilities, energy balances and the role of intrinsic hydrodynamic instabilities. This is collaborative work with Peter Stewart, Robert Whittaker, Jonathan Boyle, Matthias Heil and Sarah Waters.

Thu, 19 Feb 2009

16:30 - 17:30
DH 1st floor SR

Formation of defects in the harmonic map heat flow

Jan Bouwe van den Berg
(Amsterdam)
Abstract

The harmonic map heat flow is a model for nematic liquid crystals and also has origins in geometry. We will introduce the model and discuss some of its mathematical properties. In particular, we will focus on the possibility that singularities may develop.

The rate at which singularities develop is investigated in settings with certain symmetries. We use the method of matched asymptotic expansions and identify different scenarios for singularity formation. More specifically, we distinguish between singularities that develop in finite time and those that need infinite time to form.

Finally, we discuss which results can be proven rigorously, as well as some open problems, and we address stability issues (ongoing work with JF Williams).

Thu, 12 Feb 2009
16:30
DH 1st floor SR

Why is brake squeal so twitchy. Modelling and sensitivity studies of friction-driven vibration

Jim Woodhouse
(Cambridge)
Abstract

Friction-driven vibration occurs in a number of contexts, from the violin string to brake squeal and machine tool vibration. A review of some key phenomena and approaches will be given, then the talk will focus on a particular aspect, the "twitchiness" of squeal and its relatives. It is notoriously difficult to get repeatable measurements of brake squeal, and this has been regarded as a problem for model testing and validation. But this twitchiness is better regarded as an essential feature of the phenomenon, to be addressed by any model with pretensions to predictive power. Recent work examining sensitivity of friction-excited vibration in a system with a single-point frictional contact will be described. This involves theoretical prediction of nominal instabilities and their sensitivity to parameter uncertainty, compared with the results of a large-scale experimental test in which several thousand squeal initiations were caught and analysed in a laboratory system. Mention will also be made of a new test rig, which attempts to fill a gap in knowledge of frictional material properties by measuring a parameter which occurs naturally in any linearised stability analysis, but which has never previously been measured.

Thu, 05 Feb 2009

16:30 - 17:30
DH 1st floor SR

Scattering waves in elastic waveguides

Karima Khusnutdinova (Loughborough) CANCELLED - WILL NOW BE IN TRINITY TERM 2009
Abstract

Layered (or laminated) structures are increasingly used in modern industry (e.g., in microelectronics and aerospace engineering). Integrity of such structures is mainly determined by the quality of their interfaces: poor adhesion or delamination can lead to a catastrophic failure of the whole structure. Can nonlinear waves help us to detect such defects?

We study the dynamics of a nonlinear longitudinal bulk strain wave in a split, layered elastic bar, made of nonlinearly hyperelastic Murnaghan material. We consider a symmetric two-layered bar and assume that there is perfect interface for x 0, where the x-axis is directed along the bar. Using matched asymptotic multiple-scales expansions and the integrability theory of the KdV equation by the Inverse Scattering Transform, we examine scattering of solitary waves and show that the defect causes generation of more than one secondary solitary waves from a single incident soliton and, thus, can be used to detect the defect.

The theory is supported by experimental results. Experiments have been performed in the Ioffe Institute in St. Petersburg (Russia), using holographic interferometry and laser induced generation of an incident compression solitary wave in two- and three-layered polymethylmethacrylate (PMMA) bars, bonded using ethyl cyanoacrylate-based (CA) adhesive.

Thu, 29 Jan 2009
16:30
DH 1st floor SR

The fluid dynamics of sperm motility

Dave Smith
(Birmingham)
Abstract

Sperm cells have been an archetype for very low Reynolds number swimming since the pioneering work of Gray & Hancock in the 1950s. However, there are fundamental questions regarding the swimming and function of mammalian, and particularly human sperm, that are unanswered, and moreover scientific and technological developments mean that for the first time, answering these questions is now possible.

I will present results of our interdisciplinary work on two topics: (1) the relatively famous problem of 'surface accumulation' of sperm, and (2) characterising the changes to the flagellar beat that occur in high viscosity liquids such as cervical mucus. The approach we use combines both mathematical modelling and high speed imaging experiments.

I will then discuss areas we are currently developing: quantifying the energy transport requirements of sperm, and understanding chemotaxis - the remarkable ability of human sperm to 'smell' lily of the valley perfume, which may be important in fertilisation.

Thu, 22 Jan 2009

16:30 - 17:30
DH 1st floor SR

On the drag-out problem in liquid film theory

Eugene Benilov
(Limerick)
Abstract

We consider an infinite plate being withdrawn from an infinite pool of viscous liquid. Assuming that the effects of inertia and surface tension are weak, Derjaguin (1943) conjectured that the 'load', i.e. the thickness of the liquid film clinging to the plate, is determined by a certain formula involving the liquid's density and viscosity, the plate's velocity and inclination angle, and the acceleration due to gravity.

In the present work, Deryagin's formula is derived from the Stokes equations in the limit of small slope of the plate (without this assumption, the formula is invalid). It is shown that the problem has infinitely many steady solutions, all of which are stable - but only one of these corresponds to Derjaguin’s formula. This particular steady solution can only be singled out by matching it to a self-similar solution describing the non-steady part of the film between the pool and the film’s 'tip'. Even though the near-pool region where the steady state has been established expands with time, the upper, non-steady part of the film (with its thickness decreasing towards the tip) expands faster and, thus, occupies a larger portion of the plate. As a result, the mean thickness of the film is 1.5 times smaller than the load.

The results obtained are extended to order-one inclinantion angles and the case where surface tension is present.