Past Partial Differential Equations Seminar

29 February 2016
16:00
David Bourne
Abstract

While it is believed that many particle systems have periodic ground states, there are few rigorous crystallization results in two and more dimensions. In this talk I will show how results by the Hungarian geometer László Fejes Tóth can be used to prove that an idealised block copolymer energy is minimised by the triangular lattice. I will also discuss a numerical method for a broader class of optimal location problems and some conjectures about minimisers in three dimensions. This is joint work with Mark Peletier, Steven Roper and Florian Theil. 

  • Partial Differential Equations Seminar
22 February 2016
16:00
Matthias Kurzke
Abstract

The Ginzburg-Landau functional serves as a model for the formation of vortices in many physical contexts. The natural gradient flow, the parabolic Ginzburg-Landau equation, converges in the limit of small vortex size and finite number of vortices to a system of ODEs. Passing to the limit of many vortices in this ODE, one can derive a mean field PDE, similar to the passage from point vortex systems to the 2D Euler equations. In the talk, I will present quantitative estimates that allow us to directly connect the parabolic GL equation to the limiting mean field PDE. In contrast to recent work by Serfaty, our work is restricted to a fairly low number of vortices, but can handle vortex sheet initial data in bounded domains. This is joint work with Daniel Spirn (University of Minnesota).

  • Partial Differential Equations Seminar
15 February 2016
16:00
Melanie Rupflin
Abstract

For maps from surfaces there is a close connection between the area of the surface parametrised by the map and its Dirichlet energy and this translates also into a relation for the corresponding critical points. As such, when trying to find minimal surfaces, one route to take is to follow a suitable gradient flow of the Dirichlet energy. In this talk I will introduce such a flow which evolves both a map and a metric on the domain in a way that is designed to change the initial data into a minimal immersions and discuss some question concerning the existence of solutions and their asymptotic behaviour. This is joint work with Peter Topping.

  • Partial Differential Equations Seminar
8 February 2016
16:00
Veronique Fischer
Abstract
In this talk, I will present some recent developments in the theory of pseudo-differential operators on Lie groups. First I will discuss why `reasonable' Lie groups are the interesting manifolds where one can develop global symbolic pseudo-differential calculi. I will also give a brief overview of the analysis in the context of Lie groups. I will conclude with some recent works developing pseudo-differential calculi on certain classes of Lie groups.
  • Partial Differential Equations Seminar
25 January 2016
16:00
Abstract
We consider the initial-boundary value problem of the Navier-Stokes equations for axisymmetric initial data with swirl in the exterior of an infinite cylinder, subject to the slip boundary condition. We construct global solutions and give an upper bound for azimuthal component of vorticity in terms of the size of cylinder. The proof is based on the Boussinesq system. We show that the system is globally well-posed for axisymmetric data without swirl.
  • Partial Differential Equations Seminar
18 January 2016
16:00
Tuomo Kuusi
Abstract

The classical Gehring lemma for elliptic equations with measurable coefficients states that an energy solution, which is initially assumed to be $H^1$ - Sobolev regular, is actually in a better Sobolev space space $W^{1,q}$ for some $q>2$. This a consequence of a self-improving property that so-called reverse Hölder inequality implies. In the case of nonlocal equations a self-improving effect appears: Energy solutions are also more differentiable. This is a new, purely nonlocal phenomenon, which is not present in the local case. The proof relies on a nonlocal version of the Gehring lemma involving new exit time and dyadic decomposition arguments. This is a joint work with G. Mingione and Y. Sire. 

  • Partial Differential Equations Seminar
7 December 2015
16:00
Abstract

We study the low-temperature limit in the Landau-de Gennes theory for liquid crystals. We prove that for minimizers for orientable Dirichlet data tend to be almost uniaxial but necessarily contain some biaxiality around the singularities of a limiting harmonic map. In particular we prove that around each defect there must necessarily exist a maximal biaxiality point, a point with a purely uniaxial configuration with a positive order parameter, and a point with a purely uniaxial configuration with a negative order parameter. Estimates for the size of the biaxial cores are also given.

This is joint work with Apala Majumdar and Adriano Pisante.

  • Partial Differential Equations Seminar
2 December 2015
16:00
Sung-jin Oh
Abstract

The massless Maxwell-Klein-Gordon system describes the interaction between an electromagnetic field (Maxwell) and a charged massless scalar field (massless Klein-Gordon, or wave). In this talk, I will present a recent proof, joint with D. Tataru, of global well-posedness and scattering of this system for arbitrary finite energy data in the (4+1)-dimensional Minkowski space, in which the PDE is energy critical.

  • Partial Differential Equations Seminar

Pages