Tue, 20 Jan 2026

14:00 - 15:00
L4

Counting cycles in planar graphs

Ryan Martin
(Iowa State University)
Abstract

Basic Turán theory asks how many edges a graph can have, given certain restrictions such as not having a large clique. A more generalized Turán question asks how many copies of a fixed subgraph $H$ the graph can have, given certain restrictions. There has been a great deal of recent interest in the case where the restriction is planarity. In this talk, we will discuss some of the general results in the field, primarily the asymptotic value of ${\bf N}_{\mathcal P}(n,H)$, which denotes the maximum number of copies of $H$ in an $n$-vertex planar graph. In particular, we will focus on the case where $H$ is a cycle.

It was determined that ${\bf N}_{\mathcal P}(n,C_{2m})=(n/m)^m+o(n^m)$ for small values of $m$ by Cox and Martin and resolved for all $m$ by Lv, Győri, He, Salia, Tompkins, and Zhu.

The case of $H=C_{2m+1}$ is more difficult and it is conjectured that ${\bf N}_{\mathcal P}(n,C_{2m+1})=2m(n/m)^m+o(n^m)$. 

We will discuss recent progress on this problem, including verification of the conjecture in the case where $m=3$ and $m=4$ and a lemma which reduces the solution of this problem for any $m$ to a so-called "maximum likelihood" problem. The maximum likelihood problem is, in and of itself, an interesting question in random graph theory.

Editorial
Paseau, A Journal for the Philosophy of Mathematics volume 2 7-7 (30 Dec 2025)
Combining the conjectures of Schanuel and Zilber-Pink
Pila, J Rendiconti Lincei. Matematica e Applicazioni
Coffee and equations
Information about the admissions test for Mathematics or joint honours.
Banner for event. Abstract brain image and details.
Neural systems in general - and the human brain in particular - are organised as networks of interconnected components. Across a range of spatial scales from single cells to macroscopic areas, biological neural networks are neither perfectly ordered nor perfectly random.
Subscribe to