Mon, 02 Feb 2026
16:00
C5

The Sárközy problem in function fields

Aleksandra Kowalska
(University of Oxford)
Abstract

In the talk, I'll first describe a more general context of Sárközy-type problems and interesting directions in which they can be pursued. Then, I'll focus on the specific case of bounding the size of sets A s. t. A - A + 1 contains no prime. After describing the progress on the problem for integers, I'll pass on to considering an analogous question for function fields and (after a general introduction to function fields) I'll speak about my recent result in this area.

Gesine Reinert’s contribution to the Discussion of ‘Statistical exploration of the Manifold Hypothesis’ by Whiteley et al’
Reinert, G Journal of the Royal Statistical Society Series B Statistical Methodology qkag008 (20 Jan 2026)
Tue, 03 Feb 2026

14:00 - 15:00
L4

Cycle-factors of regular graphs via entropy

Lukas Michel
(University of Oxford)
Abstract

It is a classical result that a random permutation of $n$ elements has, on average, about $\log n$ cycles. We generalise this fact to all directed $d$-regular graphs on $n$ vertices by showing that, on average, a random cycle-factor of such a graph has $\mathcal{O}((n\log d)/d)$ cycles. This is tight up to the constant factor and improves the best previous bound of the form $\mathcal{O}({n/\sqrt{\log d}})$ due to Vishnoi. It also yields randomised polynomial-time algorithms for finding such a cycle-factor and for finding a tour of length $(1+\mathcal{O}((\log d)/d)) \cdot n$ if the graph is connected. The latter result makes progress on a restriction of the Traveling Salesman Problem to regular graphs, a problem studied by Vishnoi and by Feige, Ravi, and Singh. Our proof uses the language of entropy to exploit the fact that the upper and lower bounds on the number of perfect matchings in regular bipartite graphs are extremely close.

This talk is based on joint work with Micha Christoph, Nemanja Draganić, António Girão, Eoin Hurley, and Alp Müyesser.

Tue, 10 Feb 2026

14:00 - 15:00
L4

Ramsey numbers of trees

Jun Yan
(University of Oxford)
Abstract

For a tree $T$ whose bipartition classes have sizes $t_1 \ge t_2$, two simple constructions shows that the Ramsey number of $T$ is at least $\max\{t_1+2t_2,2t_1\}-1$. In 1974, Burr conjectured that equality holds for every tree. It turns out that Burr’s conjecture is false for certain trees called the double stars, though all of the known counterexamples have large maximum degrees. In 2002, Haxell, Łuczak, and Tingley showed that Burr’s conjecture is approximately true if one imposes a maximum degree condition.

We show that Burr’s conjecture holds for all trees with up to small linear maximum degrees. That is, there exists $c>0$ such that for every $n$-vertex tree $T$ with maximum degree at most $cn$ and bipartition class sizes $t_1\ge t_2$, its Ramsey number $R(T)$ is exactly $\max\{t_1+2t_2,2t_1\}-1$. We also generalise this result to determine the exact asymmetric Ramsey number $R(T,S)$ of two trees $T$ and $S$ under certain additional conditions, and construct examples showing that these conditions are necessary. 

This talk is based on joint work with Richard Montgomery and Matías Pavez-Signé.

Wed, 04 Feb 2026
12:45
TCC VC

Cluster Algebras and Their Applications

Adam Kmec
Abstract

First introduced by Fomin and Zelevinsky, cluster algebras are commutative rings that have many combinatorial properties. They have had many applications to both mathematics and physics. In this talk, I will first introduce cluster algebras and explore some of their properties. I will then move on to their applications, starting with dilogarithm identities and then moving to integrable systems and the thermodynamic Bethe ansatz (TBA). Time permitting, I will connect some of these ideas to the ODE/IM correspondence. 

Quantum snakes on a plane: mobile, low dimensional logical qubits on a 2D surface
Anonymous PRX Quantum

'Thorough preparation, engaging delivery, active learning, supported by clear, visual-aided, well-structured content.'

But enough of Google AI. For a good student lecture, how about the human touch?

Sat, 28 Feb 2026

09:30 - 16:30
Andrew Wiles Building

Oxford Women and Non-Binary People in Mathematics Day

Abstract
Further Information

Oxford Women and Non-Binary People in Maths Day – Saturday 28 February

Free one-day conference
Date and time: Saturday 28 February, 9:30am–4:30pm
Location: Andrew Wiles Building, University of Oxford

Registration closes on 20 February (or earlier if venue capacity is reached).

Travel funding applications and poster abstract submissions close on 13 February.
Please see the attached flyer for full details.

The Oxford Women and Non-Binary People in Maths Day is open to everyone, and is especially aimed at undergraduate and graduate students of underrepresented genders who are considering future maths-related careers.

The programme includes:

  • A keynote from Prof Ulrike Tillmann (former LMS President and current Vice-President of the International Mathematical Union)
  • Career talks and panels covering academia and industry
  • A workshop on mathematical communication
  • Short research talks and poster presentations
  • Sessions on Ada Lovelace and on the experiences of non-binary people learning maths
  • Industry networking stalls

More information and registration: https://www.oxwomeninmaths.co.uk/
Instagram: @oxwomeninmaths

Join us on Friday 6th Feb from 12-1 pm to hear Dr Jenny Power (Heriot-Watt University) share some of the personal and unexpected lessons she learnt while completing her PhD. We’ll then discuss how a “perfect PhD student” doesn’t exist. There will be a free sandwich lunch as always.

Subscribe to