# Past Combinatorial Theory Seminar

Rainbow connectivity is a new concept for measuring the connectivity of a graph which was introduced in 2008 by Chartrand, Johns, McKeon and Zhang. In a graph G with a given edge colouring, a rainbow path is a path all of whose edges have distinct colours. The minimum number of colours required to colour the edges of G so that every pair of vertices is joined by at least one rainbow path is called the rainbow connection number rc(G) of the graph G.

For any graph G, rc(G) >= diam(G). We will discuss rainbow connectivity in the random graph setting and present the result that for random graphs, rainbow connectivity 2 happens essentially at the same time as diameter 2. In fact, in the random graph process, with high probability the hitting times of diameter 2 and of rainbow connection number 2 coincide

Given a finite list of vectors X in $\R^d$, one can define the box spline $B_X$. Box splines are piecewise polynomial functions that are used in approximation theory. They are also interesting from a combinatorial point of view and many of their properties solely depend on the structure of the matroid defined by the list X. The support of the box spline is a certain polytope called zonotope Z(X). We will show that if the list X is totally unimodular, any real-valued function defined on the set of lattice points in the interior of Z(X) can be extended to a function on Z(X) of the form $p(D)B_X$ in a unique way, where p(D) is a differential operator that is contained in the so-called internal P-space. This was conjectured by Olga Holtz and Amos Ron. The talk will focus on combinatorial aspects and all objects mentioned above will be defined. (arXiv:1211.1187)