Forthcoming events in this series


Tue, 16 May 2017
14:00
L5

Random functions in Chebfun

Nick Trefethen
(Mathematical Institute)
Abstract

What's the continuous analog of randn?  In recent months I've been exploring such questions with Abdul-Lateef Haji-Ali and other members of the Chebfun team, and Chebfun now has commands randnfun, randnfun2, randnfunsphere, and randnfundisk.  These are based on finite Fourier series with random coefficients, and interesting questions arise in the "white noise" limit as the lengths of the series approaches infinity and as random ODEs become stochastic DEs.    This work is at an early stage and we are grateful for input from stochastic experts at Oxford and elsewhere.

Tue, 09 May 2017
14:30
L3

Ill-conditioning and numerical stability in radial basis functions (RBFs) using frame theory

Cécile Piret
(Michigan Technological University)
Abstract

We analyse the numerical approximation of functions using radial basis functions in the context of frames. Frames generalize the notion of a basis by allowing redundancy, while being restricted by a so-called frame condition. The theory of numerical frame approximations allows the study of ill-conditioning, inherently due to their redundancy, and suggests discretization techniques that still offer numerical stability to machine precision. We apply the theory to radial basis functions.

 

Tue, 09 May 2017
14:00
L3

Computation of the joint spectral radius by optimization techniques

Amirali Ahmadi
(Princeton University)
Abstract


The joint spectral radius (JSR) of a set of matrices characterizes the maximum growth rate that can be achieved by multiplying them in arbitrary order. This concept, which essentially generalizes the notion of the "largest eigenvalue" from one matrix to many, was introduced by Rota and Strang in the early 60s and has since emerged in many areas of application such as stability of switched linear systems, computation of the capacity of codes, convergence of consensus algorithms, tracability of graphs, and many others. The JSR is a very difficult quantity to compute even for a pair of matrices. In this talk, we present optimization-based algorithms (e.g., via semidefinite programming or dynamic programming) that can either compute the JSR exactly in special cases or approximate it with arbitrary prescribed accuracy in the general case.

Based on joint work (in different subsets) with Raphael Jungers, Pablo Parrilo, and Mardavij Roozbehani.
 

Tue, 02 May 2017
14:00
L3

Nonconvex geometry of low-rank optimizations

Gongguo Tang
(Colorado School of Mines)
Abstract

The past few years have seen a surge of interest in nonconvex reformulations of convex optimizations using nonlinear reparameterizations of the optimization variables. Compared with the convex formulations, the nonconvex ones typically involve many fewer variables, allowing them to scale to scenarios with millions of variables. However, one pays the price of solving nonconvex optimizations to global optimality, which is generally believed to be impossible. In this talk, I will characterize the nonconvex geometries of several low-rank matrix optimizations. In particular, I will argue that under reasonable assumptions, each critical point of the nonconvex problems either corresponds to the global optimum of the original convex optimizations, or is a strict saddle point where the Hessian matrix has a negative eigenvalue. Such a geometric structure ensures that many local search algorithms can converge to the global optimum with random initializations. Our analysis is based on studying how the convex geometries are transformed under nonlinear parameterizations.

Thu, 09 Mar 2017
14:00
L3

TBA

Adilet Otemisov
(University of Oxford and Alan Turing Institute)
Tue, 07 Mar 2017
14:00
L5

Efficient DC algorithm for sparse optimization

Akiko Takeda
(Institute of Statistical Mathematics Tokyo)
Abstract

In various research fields such as machine learning, compressed sensing and operations research, optimization problems which seek sparsity of solutions by the cardinality constraint or rank constraint are studied. We formulate such problems as DC (Difference of two Convex functions) optimization problems and apply DC Algorithm (DCA) to them. While a subproblem needs to be solved in each DCA iteration, its closed-form solution can be easily obtained by soft-thresholding operation. Numerical experiments demonstrate the efficiency of the proposed DCA in comparison with existing methods.
This is a joint work with J. Gotoh (Chuo Univ.) and K. Tono (U. Tokyo). 

Tue, 31 Jan 2017
14:30
L5

Sync-Rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchronization

Mihai Cucuringu
(University of Oxford)
Abstract

We consider the classic problem of establishing a statistical ranking of a set of n items given a set of inconsistent and incomplete pairwise comparisons between such items. Instantiations of this problem occur in numerous applications in data analysis (e.g., ranking teams in sports data), computer vision, and machine learning. We formulate the above problem of ranking with incomplete noisy information as an instance of the group synchronization problem over the group SO(2) of planar rotations, whose usefulness has been demonstrated in numerous applications in recent years. Its least squares solution can be approximated by either a spectral or a semidefinite programming (SDP) relaxation, followed by a rounding procedure. We perform extensive numerical simulations on both synthetic and real-world data sets (Premier League soccer games, a Halo 2 game tournament and NCAA College Basketball games) showing that our proposed method compares favorably to other algorithms from the recent literature.

We propose a similar synchronization-based algorithm for the rank-aggregation problem, which integrates in a globally consistent ranking pairwise comparisons given by different rating systems on the same set of items. We also discuss the problem of semi-supervised ranking when there is available information on the ground truth rank of a subset of players, and propose an algorithm based on SDP which recovers the ranks of the remaining players. Finally, synchronization-based ranking, combined with a spectral technique for the densest subgraph problem, allows one to extract locally-consistent partial rankings, in other words, to identify the rank of a small subset of players whose pairwise comparisons are less noisy than the rest of the data, which other methods are not able to identify. 
 

Tue, 31 Jan 2017
14:00
L5

Interpolation and quadrature in perturbed points

Nick Trefethen
(Mathematical Institute)
Abstract

The trigonometric interpolants to a periodic function in equispaced points converge if is Dini-continuous, and the associated quadrature formula, the trapezoidal rule, converges if is continuous.  What if the points are perturbed?  Amazingly little has been done on this problem, or on its algebraic (i.e. nonperiodic) analogue.  I will present new results joint with Anthony Austin which show some surprises.

 

Tue, 24 Jan 2017
14:30
L5

On the spectral problem for trivariate functions

Behnam Hashemi
(Mathematical Institute)
Abstract


Using a variational approach applied to generalized Rayleigh functionals, we extend the concepts of singular values and singular functions to trivariate functions defined on a rectangular parallelepiped. We also consider eigenvalues and eigenfunctions for trivariate functions whose domain is a cube. For a general finite-rank trivariate function, we describe an algorithm for computing the canonical polyadic (CP) decomposition, provided that the CP factors are linearly independent in two variables. All these notions are computed using Chebfun. Application in finding the best rank-1 approximation of trivariate functions is investigated. We also prove that if the function is analytic and two-way orthogonally decomposable (odeco), then the CP values decay geometrically, and optimal finite-rank approximants converge at the same rate.
 

Tue, 29 Nov 2016
14:30
L3

Random plane waves and other classes of random functions

Dmitry Belyaev
(Mathematical Institute)
Abstract


There are several classes of random function that appear naturally in mathematical physics, probability, number theory, and other areas of mathematics. I will give a brief overview of some of these random functions and explain what they are and why they are important. Finally, I will explain how I use chebfun to study these functions.
 

Tue, 29 Nov 2016
14:00
L3

Stochastic discrete Hamiltonian variational integrators

Tom Tyranowski
(Imperial College)
Abstract

Stochastic Hamiltonian systems with multiplicative noise are a mathematical model for many physical systems with uncertainty. For example, they can be used to describe synchrotron oscillations of a particle in a storage ring. Just like their deterministic counterparts, stochastic Hamiltonian systems possess several important geometric features; for instance, their phase flows preserve the canonical symplectic form. When simulating these systems numerically, it is therefore advisable that the numerical scheme also preserves such geometric structures. In this talk we propose a variational principle for stochastic Hamiltonian systems and use it to construct stochastic Galerkin variational integrators. We show that such integrators are indeed symplectic, preserve integrals of motion related to Lie group symmetries, demonstrate superior long-time energy behavior compared to nonsymplectic methods, and they include stochastic symplectic Runge-Kutta methods as a special case. We also analyze their convergence properties and present the results of several numerical experiments.