Mon, 06 Nov 2023

13:00 - 14:00
N3.12

Mathematrix: Mentoring Discussion

Abstract

We will be joined by people with mentoring experience to discuss the importance of both having and being a good mentor.

Fri, 03 Nov 2023
16:00
L1

Departmental Colloquium (Alicia Dickenstein) - Algebraic geometry tools in systems biology

Alicia Dickenstein
Further Information

Alicia Dickenstein is an Argentine mathematician known for her work on algebraic geometry, particularly toric geometry, tropical geometry, and their applications to biological systems.

Abstract

In recent years, methods and concepts of algebraic geometry, particularly those of real and computational algebraic geometry, have been used in many applied domains. In this talk, aimed at a broad audience, I will review applications to molecular biology. The goal is to analyze standard models in systems biology to predict dynamic behavior in regions of parameter space without the need for simulations. I will also mention some challenges in the field of real algebraic geometry that arise from these applications.

Fri, 03 Nov 2023
16:00
L1

Algebraic geometry tools in systems biology

Alicia Dickenstein
(University of Buenos Aires)
Abstract

In recent years, methods and concepts of algebraic geometry, particularly those of real and computational algebraic geometry, have been used in many applied domains. In this talk, aimed at a broad audience, I will review applications to molecular biology. The goal is to analyze standard models in systems biology to predict dynamic behavior in regions of parameter space without the need for simulations. I will also mention some challenges in the field of real algebraic geometry that arise from these applications.

Fri, 03 Nov 2023

15:00 - 16:00
L5

The Expected Betti Numbers of Preferential Attachment Clique Complexes

Chunyin Siu
(Cornell)
Further Information

Chunyin Siu (Alex) is a PhD candidate at Cornell University at the Center for Applied Mathematics, and is a Croucher scholar (2019) and a Youde scholar (2018).

His primary research interests lie in the intersection of topological data analysis, network analysis, topological statistics and computational geometry. He is advised by Prof. Gennady Samorodnitsky. Before coming to Cornell University, he was a MPhil. student advised by Prof. Ronald (Lokming) Lui at the Chinese University of Hong Kong.

Abstract

The preferential attachment model is a natural and popular random graph model for a growing network that contains very well-connected ``hubs''. Despite intense interest in the higher-order connectivity of these networks, their Betti numbers at higher dimensions have been largely unexplored.

In this talk, after a brief survey on random topology, we study the clique complexes of preferential attachment graphs, and we prove the asymptotics of the expected Betti numbers. If time allows, we will briefly discuss their homotopy connectedness as well. This is joint work with Gennady Samorodnitsky, Christina Lee Yu and Rongyi He, and it is based on the preprint https://arxiv.org/abs/2305.11259

Fri, 03 Nov 2023

14:00 - 15:00
L3

Leader, follower, and cheater in collective cancer invasion

Professor Yi Jiang
(College of Arts and Science Georgia State University)
Abstract

A major reason for the failure of cancer treatment and disease progression is the heterogeneous composition of tumor cells at the genetic, epigenetic, and phenotypic levels. Despite extensive efforts to characterize the makeup of individual cells, there is still much to be learned about the interactions between heterogeneous cancer cells and between cancer cells and the microenvironment in the context of cancer invasion. Clinical studies and in vivo models have shown that cancer invasion predominantly occurs through collective invasion packs, which invade more aggressively and result in worse outcomes. In vitro experiments on non-small cell lung cancer spheroids have demonstrated that the invasion packs consist of leaders and followers who engage in mutualistic social interactions during collective invasion. Many fundamental questions remain unanswered: What is the division of labor within the heterogeneous invasion pack? How does the leader phenotype emerge? Are the phenotypes plastic? What's the role of the individual "cheaters"? How does the invasion pack interact with the stroma? Can the social interaction network be exploited to devise novel treatment strategies? I will discuss recent modeling efforts to address these questions and hope to convince you that identifying and perturbing the "weak links" within the social interaction network can disrupt collective invasion and potentially prevent the malignant progression of cancer. 

Fri, 03 Nov 2023
12:00
L3

Inversions, Shadows, and Extrapolate Dictionaries in CCFT

Sabrina Pasterski
(Perimeter Institute)
Abstract

The Celestial Holography program encompasses recent efforts to understand the flat space hologram in terms of a CFT living on the celestial sphere. Here we have fun relating various extrapolate dictionaries in CCFT and examining tools we can apply when perturbing around a 4D CFT in the bulk.

 

 

Fri, 03 Nov 2023

12:00 - 13:00

Quantum cluster algebras and dual canonical bases

Liam Riordan
(University of Bath)
Abstract

Cluster algebras and their quantum counterparts were invented in the early 2000s in an attempt to construct elements of dual canonical bases. This turned out to be a harder goal than first realised. In this talk I will aim to give an introduction and overview of the theory and display the wide range of interesting maths which has gone into making steps in this area. I will try to assume as little possible prior knowledge and instead focus on interesting questions which remain open in this area.

Thu, 02 Nov 2023

17:00 - 18:00
L3

A group action version of the Elekes-Szabó theorem

Martin Bays (Oxford)
Abstract

I will present a generalisation of the Elekes-Szabó result, that any ternary algebraic relation in characteristic 0 having large intersections with (certain) finite grids must essentially be the graph of a group law, to a version where one obtains an algebraic group action. In the end the conclusion will be similar, but with weaker assumptions. This is recent work with Tingxiang Zou.

Thu, 02 Nov 2023
16:00
Lecture Room 4, Mathematical Institute

An offline learning approach to propagator models

Dr Yufei Zhang
(Department of Mathematics, Imperial College London)
Abstract

We consider an offline learning problem for an agent who first estimates an unknown price impact kernel from a static dataset, and then designs strategies to liquidate a risky asset while creating transient price impact. We propose a novel approach for a nonparametric estimation of the propagator from a dataset containing correlated price trajectories, trading signals and metaorders. We quantify the accuracy of the estimated propagator using a metric which depends explicitly on the dataset. We show that a trader who tries to minimise her execution costs by using a greedy strategy purely based on the estimated propagator will encounter suboptimality due to spurious correlation between the trading strategy and the estimator. By adopting an offline reinforcement learning approach, we introduce a pessimistic loss functional taking the uncertainty of the estimated propagator into account, with an optimiser which eliminates the spurious correlation, and derive an asymptotically optimal bound on the execution costs even without precise information on the true propagator. Numerical experiments are included to demonstrate the effectiveness of the proposed propagator estimator and the pessimistic trading strategy.

Thu, 02 Nov 2023
16:00
L5

Partition regularity of Pythagorean pairs

Joel Moreira
(University of Warwick)
Abstract

Is there a partition of the natural numbers into finitely many pieces, none of which contains a Pythagorean triple (i.e. a solution to the equation x2+y2=z2)? This is one of the simplest questions in arithmetic Ramsey theory which is still open. I will present a recent partial result, showing that in any finite partition of the natural numbers there are two numbers x,y in the same cell of the partition, such that x2+y2=z2 for some integer z which may be in a different cell. 

The proof consists, after some initial maneuvers inspired by ergodic theory, in controlling the behavior of completely multiplicative functions along certain quadratic polynomials. Considering separately aperiodic and "pretentious" functions, the last major ingredient is a concentration estimate for functions in the latter class when evaluated along sums of two squares.

The talk is based on joint work with Frantzikinakis and Klurman.

Thu, 02 Nov 2023
15:00
L4

Generalising fat bundles and positive curvature

Alberto Rodriguez Vazquez
(KU Leuven)
Abstract

Alan Weinstein, introduced the concept of "fat bundle" as a tool to understand when the total space of a fiber bundle with totally geodesic fibers allows a metric with positive sectional curvature. 

In recent times, certain weaker notions than the condition of having a metric with positive sectional curvature have been studied due to the apparent scarcity of spaces that meet this condition. Positive kth-intermediate Ricci curvature (Rick > 0) on a Riemannian manifold Mn is a condition that bridges the gap between positive sectional curvature and positive Ricci curvature. Indeed, when k = 1, this condition corresponds to positive sectional curvature, and when k = n−1, it corresponds to positive Ricci curvature. 

In this talk, I will discuss an ongoing project with Miguel Domínguez Vázquez, David González-Álvaro, and Jason DeVito, which aims to create new examples of compact Riemannian manifolds with Ric2 > 0. We achieve this by employing a certain generalisation of the "fat bundle" concept.

Thu, 02 Nov 2023
14:00
Lecture Room 3

Recent Developments in the Numerical Solution of PDE-Constrained Optimization Problems

John Pearson
(Edinburgh University)
Abstract

Optimization problems subject to PDE constraints constitute a mathematical tool that can be applied to a wide range of scientific processes, including fluid flow control, medical imaging, option pricing, biological and chemical processes, and electromagnetic inverse problems, to name a few. These problems involve minimizing some function arising from a particular physical objective, while at the same time obeying a system of PDEs which describe the process. It is necessary to obtain accurate solutions to such problems within a reasonable CPU time, in particular for time-dependent problems, for which the “all-at-once” solution can lead to extremely large linear systems.

 

In this talk we consider iterative methods, in particular Krylov subspace methods, to solve such systems, accelerated by fast and robust preconditioning strategies. In particular, we will survey several new developments, including block preconditioners for fluid flow control problems, a circulant preconditioning framework for solving certain optimization problems constrained by fractional differential equations, and multiple saddle-point preconditioners for block tridiagonal linear systems. We will illustrate the benefit of using these new approaches through a range of numerical experiments.

 

This talk is based on work with Santolo Leveque (Scuola Normale Superiore, Pisa), Spyros Pougkakiotis (Yale University), Jacek Gondzio (University of Edinburgh), and Andreas Potschka (TU Clausthal).

Thu, 02 Nov 2023

12:00 - 13:00
L3

Coarsening of thin films with weak condensation

Hangjie Ji
(North Carolina State University)
Abstract

A lubrication model can be used to describe the dynamics of a weakly volatile viscous fluid layer on a hydrophobic substrate. Thin layers of the fluid are unstable to perturbations and break up into slowly evolving interacting droplets. In this talk, we will present a reduced-order dynamical system derived from the lubrication model based on the nearest-neighbour droplet interactions in the weak condensation limit. Dynamics for periodic arrays of identical drops and pairwise droplet interactions are investigated which provide insights to the coarsening dynamics of a large droplet system. Weak condensation is shown to be a singular perturbation, fundamentally changing the long-time coarsening dynamics for the droplets and the overall mass of the fluid in two additional regimes of long-time dynamics. This is joint work with Thomas Witelski.

Thu, 02 Nov 2023

12:00 - 13:00
L1

Model and data fusion: physics-driven learning in cancer research

Pasquale Ciarletta
(MOX Laboratory, Politecnico di Milano, Italy)
Abstract

The key role of physical and mechanical interactions in cancer emerges from a very large variety of data sources and methods - from genomics to bioimaging, from proteomics to clinical records. Thus, learning physics-driven relational information is crucial to characterize its progression at different scales.

In this talk I will discuss how mathematical and computational tools allow for learning  and better understanding of  the mechano-biology of cancer thanks to the integration of  patient-specific data and physics-based models. I will present a few applications developed in the last decade in which the development of  digital twins,  empowered by ad-hoc learning tools,  allows us to test new hypotheses,  to assess the model predictions against biological and clinical data, and to aid decision-making in a clinical setting.

Funding from MUR - PRIN 2020, Progetto di Eccellenza 2023-2027 and Regione Lombardia (NEWMED Grant, ID: 117599, POR FESR 2014-2020) is gratefully acknowledged.
Thu, 02 Nov 2023

11:00 - 12:00
C6

Unlikely Double Intersections in a power of a modular curve (Part 1)

Francesco Ballini
(University of Oxford)
Abstract

The Zilber-Pink Conjecture, which should rule the behaviour of intersections between an algebraic variety and a countable family of "special varieties", does not take into account double intersections; some results related to tangencies with special subvarieties have been obtained by Marché-Maurin in 2014 in the case of powers of the multiplicative group and by Corvaja-Demeio-Masser-Zannier in 2019 in the case of elliptic schemes. We prove that any algebraic curve contained in Y(1)^2 is tangent to finitely many modular curves, which are the one-codimensional special subvarieties. The proof uses the Pila-Zannier strategy: the Pila-Wilkie counting theorem is combined with a degree bound coming from a Weakly Bounded Height estimate. The seminar will be divided into two talks: in the first one, we will explain the general Zilber-Pink Conjecture philosophy, we will describe the main tools used in this context and we will see what the differences in the double intersection case are; in the second one, we will focus on the proofs and we will see how o-minimality plays a main role here. In the case of a curve in Y(1)^2, o-minimality is also used for height estimates (which are then ineffective, which is usually not the case).

Wed, 01 Nov 2023

16:00 - 17:00
L6

Topology and dynamics on the space of subgroups

Pénélope Azuelos
(University of Bristol)
Abstract

The space of subgroups of a countable group is a compact topological space which encodes many of the properties of its non-free actions. We will discuss some approaches to studying the Cantor-Bendixson decomposition of this space in the context of hyperbolic groups and groups which act (nicely) on trees. We will also give some conditions under which the conjugation action on the perfect kernel is highly topologically transitive and see how this can be applied to find new examples of groups (including all virtually compact special groups) which admit faithful transitive amenable actions. This is joint work with Damien Gaboriau.

Tue, 31 Oct 2023

16:00 - 17:00
C2

Local topological order and boundary algebras

Pieter Naaijkens
(University of Cardiff)
Abstract

The study of topologically ordered quantum phases has led to interesting connections with, for example, the study of subfactors. In this talk, I will introduce a new axiomatisation of such quantum models defined on d-dimensional square lattices in terms of nets of projections. These local topological order axioms are satisfied by known 2D models such as the toric code and Levin-Wen models built on a unitary fusion category. We show that these axioms lead to a definition of boundary algebras naturally living on a hyperplane. This boundary algebra encodes information about the excitations in the bulk theory, leading to a bulk-boundary correspondence. I will outline the main points, with an emphasis on interesting connections to operator algebras and fusion categories. Based on joint work with C. Jones, Penneys, and Wallick (arXiv:2307.12552).

Tue, 31 Oct 2023

16:00 - 17:00
L6

Bounding the Large Deviations in Selberg's Central Limit Theorem

Louis-Pierre Arguin
(University of Oxford)
Abstract

It was proved by Selberg's in the 1940's that the typical values of the logarithm of the Riemann zeta function on the critical line is distributed like a complex Gaussian random variable. In this talk, I will present recent work with Emma Bailey that extends the Gaussian behavior for the real part to the large deviation regime. This gives a new proof of unconditional upper bounds of the $2k$-moments of zeta for $0\leq k\leq 2$, and lower bounds for $k>0$. I will also discuss the connections with random matrix theory and with the Moments Conjecture of Keating & Snaith. 

 

Tue, 31 Oct 2023
15:00

Coarse obstructions to cubulation

Harry Petyt
Abstract

Given a group $G$, finding a geometric action of $G$ on a CAT(0) cube complex can be used to say some rather strong things about $G$. Such actions are not always easy to find, however, which makes it useful to have sufficient conditions, both for existence and for non-existence. This talk concerns the latter: we shall see a coarse geometric obstruction to a group admitting a cocompact cubulation. Based on joint work with Zach Munro.

Tue, 31 Oct 2023
14:00
L5

Elliptic representations

Dan Ciubotaru
(Oxford)
Abstract

In representation theory, the characters of induced representations are explicitly known in terms of the character of the inducing representation. This leads to the question of understanding the elliptic representation space, i.e., the space of representations modulo the properly (parabolically) induced characters. I will give an overview of the description of the elliptic space for finite Weyl groups, affine Weyl groups, affine Hecke algebras, and their connection with the geometry of the nilpotent cone of a semisimple complex Lie algebra. These results fit together in the representation theory of semisimple p-adic groups, where they lead to a new description of the elliptic space within the framework of the local Langlands parameterisation.

Tue, 31 Oct 2023

14:00 - 15:00
L3

Competitive analysis in random graph processes

Peleg Michaeli
(University of Oxford)
Abstract

Consider the following "controlled" random graph process: edges of the complete graph are revealed one by one in random order to an online algorithm, which immediately decides whether to retain each observed edge. The algorithm's objective is to construct a graph property within specified constraints on the total number of observed edges ("time") and the total number of retained edges ("budget").

During this talk, I will present results in this model for natural graph properties, such as connectivity, Hamiltonicity, and containment of fixed-size subgraphs. Specifically, I will describe a strategy to construct a Hamilton cycle at the hitting time for minimum degree 2 by retaining a linear number of edges. This extends the classical hitting time result for Hamiltonicity originally established by Ajtai–Komlós–Szemerédi and Bollobás.

The talk is based on joint work with Alan Frieze and Michael Krivelevich.

Tue, 31 Oct 2023
13:00
L1

Theories with 8 Supercharges, the Higgs Mechanism, and Symplectic Singularities

Julius Grimminger
(Oxford )
Abstract

I will talk about supersymmetric quantum field theories with 8 supercharges in dimensions 3-6. After a brief introduction I will mostly speak about the moduli space of vacua of such theories, and in particular their Higgs branches, which are so called symplectic singularities (or mild generalisations thereof). Powerful theorems from mathematics say that a singular Higgs branch is stratified into a disjoint union of smooth open subsets, so called symplectic leaves. This stratification matches exactly the pattern of partial Higgsings of the theory in question. After introducing the stratification and explaining its physical interpretation, I will show how brane systems and so called magnetic quivers can be used to compute it.

Tue, 31 Oct 2023
11:00
Lecture Room 4, Mathematical Institute

Asymptotic behavior of simple random walk on uniform spanning tree and loop-erased random walk.

Satomi Watanabe
(Kyoto University)
Abstract

Random walks on random graphs are associated with diffusion in disordered media. In this talk, the graphs of interest are uniform spanning tree (UST) and loop-erased random walk (LERW). First I will demonstrate some asymptotic behavior of the simple random walk on the three-dimensional UST. Next I will discuss annealed transition probability of the simple random walk on high-dimensional LERWs.

 

Mon, 30 Oct 2023
16:30
Mary Sunley Lecture Theatre, St Catherine's College

The Alan Tayler Lecture 2023 - The Maths (and Engineering) of Moving People and Things Around

Eddie Wilson
(St Catherine's College)
Further Information

St Catherine’s College has a long tradition in applied and industrial mathematics and has hosted an annual series of lectures on Mathematics and its Applications since 1986. In 1995, the series was renamed in memory of Alan Tayler, in tribute to his efforts and achievements in this field. Alan was the first Fellow in Applied Mathematics to be appointed at St Catherine’s. His lifelong commitment was to the practical application of mathematical ideas to problems in science and industry. His vision continues to inspire many national and international collaborations on the theme of mathematics-in-industry.

Registration: this event has limited capacity so it is recommended to register to confirm a space. To sign up to this event please complete the form.