Truth Be Told: How To Interpret Past Mathematicians
Abstract
How should we interpret past mathematicians who may use the same vocabulary as us but with different meanings, or whose philosophical outlooks differ from ours? Errors aside, it is often assumed that past mathematicians largely made true claims—but what exactly justifies that assumption?
In this talk, we will explore these questions through general philosophical considerations and three case studies: 19th-century analysis, 18th-century geometry, and 19th-century matricial algebra. In each case, we encounter a significant challenge to supposing that the mathematicians in question made true claims. We will show how these challenges can be addressed and overcome.
16:00
Floer Homology and Square Peg Problem
Abstract
In 1911, Otto Toeplitz posed the intriguing "Square Peg Problem," asking whether every Jordan curve admits an inscribed square. Despite over a century of study, the problem remains unsolved in its full generality. However, significant progress has been made over the years. In this talk, we explore recent advancements by Andrew Lobb and Joshua Greene, who approach the problem through the lens of Lagrangian Floer homology. Specifically, we outline a proof of their result: every smooth Jordan curve inscribes every rectangle up to similarity.
11:00
An introduction to TeXmacs
Abstract
I will present TeXmacs (www.texmacs.org), a document preparation system with structured editing and high quality typography, designed to create technical documents.
For more details see https://mgubi.github.io/docs/programming.html
16:00
Level repulsion and the Floquet quantum Ising model beyond integrability
Abstract
Motivated by a recent experiment on a superconducting quantum
information processor, I will discuss the Floquet quantum Ising model in
the presence of integrability- and symmetry-breaking random fields. The
talk will focus on the relation between boundary spin correlations,
spectral pairings, and effects of the random fields. If time permits, I
will also touch upon self-similarity in the dynamic phase diagram of
Fibonacci-driven quantum Ising models.
16:00
Quantum expanders from quantum groups.
Abstract
I will give a light introduction to the concept of a quantum expander, which is an analogue of an expander graph that arises in quantum information theory. Most examples of quantum expanders that appear in the quantum information literature are obtained by random matrix techniques. I will explain another, more algebraic approach to constructing quantum expanders, which is based on using actions and representations of discrete quantum groups with Kazhdan's property (T). This is joint work with Eric Culf (U Waterloo) and Matthijs Vernooij (TU Delft).
Optimizing the Campos-Griffiths-Morris-Sahasrabudhe upper bound on Ramsey numbers
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Abstract
In a recent breakthrough Campos, Griffiths, Morris and Sahasrabudhe obtained the first exponential improvement of the upper bound on the classical Ramsey numbers since 1935. I will outline a reinterpretation of their proof, replacing the underlying book algorithm with a simple inductive statement. In particular, I will present a complete proof of an improved upper bound on the off-diagonal Ramsey numbers and describe the main steps involved in improving their upper bound for the diagonal Ramsey numbers to $R(k,k)\le(3.8)^k$ for sufficiently large $k$.
Based on joint work with Parth Gupta, Ndiame Ndiaye, and Louis Wei.
15:00
Embedding products of trees into higher rank
Abstract
I will present a joint work with Thang Nguyen where we show that there exists a quasi-isometric embedding of the product of n copies of the hyperbolic plane into any symmetric space of non-compact type of rank n, and there exists a bi-Lipschitz embedding of the product of n copies of the 3-regular tree into any thick Euclidean building of rank n. This extends a previous result of Fisher--Whyte. The proof is purely geometrical, and the result also applies to the non Bruhat--Tits buildings. I will start by describing the objects and the embeddings, and then give a detailed sketch of the proof in rank 2.
14:00
Rohit Sahasrabuddhe: Concise network models from path data
Abstract
Networks provide a powerful language to model and analyse interconnected systems. Their building blocks are edges, which can then be combined to form walks and paths, and thus define indirect relations between distant nodes and model flows across the system. In a traditional setting, network models are first-order, in the sense that flow across nodes is made of independent sequences of transitions. However, real-world systems often exhibit higher-order dependencies, requiring more sophisticated models. Here, we propose a variable-order network model that captures memory effects by interpolating between first- and second-order representations. Our method identifies latent modes that explain second-order behaviors, avoiding overfitting through a Bayesian prior. We introduce an interpretable measure to balance model size and description quality, allowing for efficient, scalable processing of large sequence data. We demonstrate that our model captures key memory effects with minimal state nodes, providing new insights beyond traditional first-order models and avoiding the computational costs of existing higher-order models.
Boundedness of discounted tree sums
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Abstract
Let $(V(u))$ be a branching random walk and $(\eta(u))$ be i.i.d marks on the vertices. To each path $\xi$ of the tree, we associate the discounted sum $D(\xi)$ which is the sum of the $\exp(V(u))\eta_u$ along the path. We study conditions under which $\sup_\xi D(\xi)$ is finite, answering an open question of Aldous and Bandyopadhyay. We will see that this problem is related to the study of the local time process of the branching random walk along a path. It is a joint work with Yueyun Hu and Zhan Shi.
14:00
Probabilistic laws on groups
Abstract
Suppose a finite group satisfies the following property: If you take two random elements, then with probability bigger than 5/8 they commute. Then this group is commutative.
Starting from this well-known result, it is natural to ask: Do similar results hold for other laws (p-groups, nilpotent groups...)? Are there analogous results for infinite groups? Are there phenomena specific to the infinite setup?
We will survey known and new results in this area. New results are joint with Gideon Amir, Maria Gerasimova and Gady Kozma.
13:00
Late time saturation of the Einstein-Rosen bridge dual to the Double Scaled SYK model
Abstract
In this talk I will explain how the size of the Einstein-Rosen (ER) bridge dual to the Double Scaled SYK (DSSYK) model saturates at late times because of finiteness of the underlying quantum Hilbert space. I will extend recent work implying that the ER bridge size equals the spread complexity of the dual DSSYK theory with an appropriate initial state. This work shows that the auxiliary "chord basis'' used to solve the DSSYK theory is the physical Krylov basis of the spreading quantum state. The ER bridge saturation follows from the vanishing of the Lanczos spectrum, derived by methods from Random Matrix Theory (RMT).
16:30
Infinite Dyson Brownian Motion as a Gradient Flow
Abstract
The Dyson Brownian motion (DMB) is a system of interacting Brownian motions with logarithmic interaction potential, which was introduced by Freeman Dyson '62 in relation to the random matrix theory. In this talk, we discuss the case where the number of particles is infinite and show that the DBM induces a diffusion structure on the configuration space having the Bakry-Émery lower Ricci curvature bound. As an application, we show that the DBM can be realised as the unique Benamou-Brenier-type gradient flow of the Boltzmann-Shannon entropy associated with the sine_beta point process.
16:00
Gap distributions and the Metric Poissonian Property
Abstract
15:30
Frobenius categories and Homotopy Quantum Field Theories
Abstract
Topological Quantum Field Theories (TQFTs) have been studied as mathematical toy models for quantum field theories in physics and are described by a functor out of some bordism category. In dimension 2, TQFTs are fully classified by Frobenius algebras. Homotopy Quantum Field Theories (HQFTs), introduced by Turaev, consider additional homotopy data to some target space X on the bordism categories. For homotopy 1-types Turaev also gives a classification via crossed G-Frobenius algebras, where G denotes the fundamental group of X.
In this talk we will introduce a multi-object generalization of Frobenius algebras called Frobenius categories and give a version of this classification theorem involving the fundamental groupoid. Further, we will give a classification theorem for HQFTs with target homotopy 2-types by considering crossed modules (joint work with Alexis Virelizier).
15:30
Stochastic quantization of fractional $\Phi^4_3$ model of Euclidean quantum field theory
Abstract
The construction of the measure of the $\Phi^4_3$ model in the 1970s has been one of the major achievements of constructive quantum field theory. In the 1980s Parisi and Wu suggested an alternative way of constructing quantum field theory measures by viewing them as invariant measures of certain stochastic PDEs. However, the highly singular nature of these equations prevented their application in rigorous constructions until the breakthroughs in the area of singular stochastic PDEs in the past decade. After explaining the basic idea behind stochastic quantization proposed by Parisi and Wu I will show how to apply this technique to construct the measure of a certain quantum field theory model generalizing the $\Phi^4_3$ model called the fractional $\Phi^4$ model. The measure of this model is obtained as a perturbation of the Gaussian measure with covariance given by the inverse of a fractional Laplacian. Since the Gaussian measure is supported in the space of Schwartz distributions and the quartic interaction potential of the model involves pointwise products, to construct the measure it is necessary to solve the so-called renormalization problem. Based on joint work with M. Gubinelli and P. Rinaldi.
14:15
CANCELLED
Abstract
A well-known problem in algebraic geometry is to construct smooth projective Calabi--Yau varieties $Y$. In the smoothing approach, we construct first a degenerate (reducible) Calabi--Yau scheme $V$ by gluing pieces. Then we aim to find a family $f\colon X \to C$ with special fiber $X_0 = f^{-1}(0) \cong V$ and smooth general fiber $X_t = f^{-1}(t)$. In this talk, we see how infinitesimal logarithmic deformation theory solves the second step of this approach: the construction of a family out of a degenerate fiber $V$. This is achieved via the logarithmic Bogomolov--Tian--Todorov theorem as well as its variant for pairs of a log Calabi--Yau space $f_0\colon X_0 \to S_0$ and a line bundle $\mathcal{L}_0$ on $X_0$.
Ease-controlled Incremental Gradient- type Algorithm for nonconvex finite sum optimization
Abstract
We consider minimizing the sum of a large number of smooth and possibly non-convex functions, which is the typical problem encountered in the training of deep neural networks on large-size datasets.
Improving the Controlled Minibatch Algorithm (CMA) scheme proposed by Liuzzi et al. (2022), we propose CMALight, an ease-controlled incremental gradient (IG)-like method. The control of the IG iteration is performed by means of a costless watchdog rule and a derivative-free line search that activates only sporadically to guarantee convergence. The schemes also allow controlling the updating of the learning rate used in the main IG iteration, avoiding the use of preset rules, thus overcoming another tricky aspect in implementing online methods.
Convergence to a stationary point holds under the lonely assumption of Lipschitz continuity of the gradients of the component functions without knowing the Lipschitz constant or imposing any growth assumptions on the norm of the gradients.
We present two sets of computational tests. First, we compare CMALight against state-of-the-art mini-batch algorithms for training standard deep networks on large-size datasets, and deep convolutional neural networks and residual networks on standard image classification tasks on CIFAR10 and CIFAR100.
Results shows that CMALight easily scales up to problem with order of millions variables and has an advantage over its state-of-the-art competitors.
Finally, we present computational results on generative tasks, testing CMALight scaling capabilities on image generation with diffusion models (U-Net architecture). CMA Light achieves better test performances and is more efficient than standard SGD with weight decay, thus reducing the computational burden (and the carbon footprint of the training process).
Laura Palagi, @email
Department of Computer, Control and Management Engineering,
Sapienza University of Rome, Italy
Joint work with
Corrado Coppola, @email
Giampaolo Liuzzi, @email
Lorenzo Ciarpaglini, @email
13:30
The Evaporation of Charged Black Holes
Abstract
Since Hawking first discovered that black holes radiate, the evaporation of black holes has been a subject of great interest. In this talk, based on [2411.03447], we review some recent results about the evaporation of charged (Reissner-Nordström) black holes. We consider in particular the difference between neutral and charged particle emission, and explain how this drives the black hole near extremality, as well as how evaporation is then changed in that limit.
16:00
Fridays@4 – Trading Options: Predicting the Future in More Ways Than One
Abstract
In the fast-paced world of trading, where exabytes of data and advanced mathematical models offer powerful insights, how do you harness these to anticipate market shifts and evolving prices? Numbers alone only tell part of the story. Beneath the surface lies the unpredictable force of human behaviour – the delicate balance of buyers and sellers shaping the market’s course.
In this talk, we’ll uncover how these forces intertwine, revealing insights that not only harness data but challenge conventional thinking about the future of trading.
Speaker: Chris Horrobin (Head of European and US people development for Optiver)

Speaker bio
Chris Horrobin is Head of European and US people development for Optiver. Chris started his career trading US and German bond options, adding currency and European index options into the mix before moving to focus primarily on index options. Chris spent his first three years in Amsterdam before transferring to Sydney.
During these years, Chris traded some of the biggest events of his career including Brexit and Trump (first time around) and before moving back to Europe led the positional team in his last year. Chris then moved out of trading and into our training team running our trading education space for four years, owning both the design and execution of our renowned internship and grad programs.
The Education Team at Optiver is central to the Optiver culture and focus on growth – both of employees and the company. Chris has now extended his remit to cover the professional development of hires throughout the business.
Mathematics: past, present, future - "The theory of knots"
Non-nilpotent graphs of groups
Abstract
A non-nilpotent graph Γ(G) of a finite group G has elements of G as vertices, with x and y joined by an edge iff a subgroup generated by these two elements is non-nilpotent. During the talk we will prove several (often unrelated) properties of this construction; for instance, any simple graph can be found as an induced subgraph of Γ(G) for some (solvable) group G. The talk is based on my article "A few remarks on the theory of non-nilpotent graphs" (May 2023).
12:00
C for Carroll
Abstract
Physics beyond relativistic invariance and without Lorentz (or Poincaré) symmetry and the geometry underlying these non-Lorentzian structures have become very fashionable of late. This is primarily due to the discovery of uses of non-Lorentzian structures in various branches of physics, including condensed matter physics, classical and quantum gravity, fluid dynamics, cosmology, etc. In this talk, I will be talking about one such theory - Carrollian theory, where the Carroll group replaces the Poincare group as the symmetry group of interest. Interestingly, any null hypersurface is a Carroll manifold and the Killing vectors on the null manifold generate Carroll algebra. Historically, Carroll group was first obtained from the Poincaré group via a contraction by taking the speed of light going to zero limit as a “degenerate cousin of the Poincaré group”. I will shed some light on Carrollian fermions, i.e. fermions defined on generic null surfaces. Due to the degenerate nature of the Carroll manifold, there exist two distinct Carroll Clifford algebras and, correspondingly, two different Carroll fermionic theories. I will discuss them in detail. Then, I will show some examples; when the dispersion relation becomes trivial, i.e. energy bands flatten out, there can be a possibility of the emergence of Carroll symmetry.
11:00
Joint seminar with Mathematical Biology and Ecology Seminar: Bifurcations, pattern formation and multi-stability in non-local models of interacting species
Abstract
Understanding the mechanisms behind the spatial distribution, self-organisation and aggregation of organisms is a central issue in both ecology and cell biology. Since self-organisation at the population level is the cumulative effect of behaviours at the individual level, it requires a mathematical approach to be elucidated.
In nature, every individual, be it a cell or an animal, inspects its territory before moving. The process of acquiring information from the environment is typically non-local, i.e. individuals have the ability to inspect a portion of their territory. In recent years, a growing body of empirical research has shown that non-locality is a key aspect of movement processes, while mathematical models incorporating non-local interactions have received increasing attention for their ability to accurately describe how interactions between individuals and their environment can affect their movement, reproduction rate and well-being. In this talk, I will present a study of a class of advection-diffusion equations that model population movements generated by non-local species interactions. Using a combination of analytical and numerical tools, I will show that these models support a wide variety of spatio-temporal patterns that are able to reproduce segregation, aggregation and time-periodic behaviours commonly observed in real systems. I will also show the existence of parameter regions where multiple stable solutions coexist and hysteresis phenomena.
Overall, I will describe various methods for analysing bifurcations and pattern formation properties of these models, which represent an essential mathematical tool for addressing fundamental questions about the many aggregation phenomena observed in nature.
Bifurcations, pattern formation and multi-stability in non-local models of interacting species
Abstract
Understanding the mechanisms behind the spatial distribution, self-organisation and aggregation of organisms is a central issue in both ecology and cell biology. Since self-organisation at the population level is the cumulative effect of behaviours at the individual level, it requires a mathematical approach to be elucidated.
In nature, every individual, be it a cell or an animal, inspects its territory before moving. The process of acquiring information from the environment is typically non-local, i.e. individuals have the ability to inspect a portion of their territory. In recent years, a growing body of empirical research has shown that non-locality is a key aspect of movement processes, while mathematical models incorporating non-local interactions have received increasing attention for their ability to accurately describe how interactions between individuals and their environment can affect their movement, reproduction rate and well-being. In this talk, I will present a study of a class of advection-diffusion equations that model population movements generated by non-local species interactions. Using a combination of analytical and numerical tools, I will show that these models support a wide variety of spatio-temporal patterns that are able to reproduce segregation, aggregation and time-periodic behaviours commonly observed in real systems. I will also show the existence of parameter regions where multiple stable solutions coexist and hysteresis phenomena.
Overall, I will describe various methods for analysing bifurcations and pattern formation properties of these models, which represent an essential mathematical tool for addressing fundamental questions about the many aggregation phenomena observed in nature.
17:00
Generic differential automorphisms in positive characteristic
Abstract
It is well known that the theory of differential-difference fields in characteristic zero has a model companion. Here by a differential-difference field I mean a field with a differential and a difference structure where the operators commute (in other words the difference structure is a differential-endomorphism). The theory DCFA_0 was studied in a series of papers by Bustamante. In this talk I will address the case of positive characteristic.
16:00
On the Bloch--Kato conjecture for $\mathrm{GSp}_4 \times \mathrm{GL}_2$
Abstract
I will report on work with Andrew Graham in which we prove new results towards the Bloch--Kato conjecture for automorphic forms on $\mathrm{GSp}_4 \times \mathrm{GL}_2$.
16:00
C*-algebras coming from buildings and their K-theory.
Abstract
Tackling complexity in multiscale kinetic and mean-field equations
Abstract
Kinetic and mean-field equations are central to understanding complex systems across fields such as classical physics, engineering, and the socio-economic sciences. Efficiently solving these equations remains a significant challenge due to their high dimensionality and the need to preserve key structural properties of the models.
In this talk, we will focus on recent advancements in deterministic numerical methods, which provide an alternative to particle-based approaches (such as Monte Carlo or particle-in-cell methods) by avoiding stochastic fluctuations and offering higher accuracy. We will discuss strategies for designing these methods to reduce computational complexity while preserving fundamental physical properties and maintaining efficiency in stiff regimes.
Special attention will be given to the role of these methods in addressing multi-scale problems in rarefied gas dynamics and plasma physics. Time permitting, we will also touch on emerging techniques for uncertainty quantification in these systems.
13:00
Aspects of anomalies
Abstract
Anomalies characterize the breaking of a classical symmetry at the quantum level. They play an important role in quantum field theories, and constitute robust observables which appear in various contexts from phenomenological particle physics to black hole microstates, or to classify phases of matter. The anomalies of a d-dimensional QFT are naturally encoded via descent equations into the so-called anomaly polynomial in (d+2)-dimensions. The aim of this seminar is to review the descent procedure, anomaly polynomial, anomaly inflow, and in particular their realisation in M-theory. While this is quite an old story, there has been some more recent developments involving holography that I'll describe if time permits.
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.
12:00
Failure of the Measure Contraction Property on the Martinet Flat Structure
Abstract
The Martinet flat structure is one of the simplest sub-Riemannian manifolds that has many non-Riemannian features: it is not equiregular, it has abnormal geodesics, and the Carnot-Carathéodory sphere is not sub-analytic. I will review how the geometry of the Martinet flat structure is tied to the equations of the pendulum. Surprisingly, the Measure Contraction Property (a weak synthetic formulation of Ricci curvature bounds in non-smooth spaces) fails, and we will try to understand why. If time permits, I will also discuss how this can be generalised to some Carnot groups that have abnormal extremals. This is a joint work in progress with Luca Rizzi.
Local convergence of adaptively regularized tensor methods
Abstract
Tensor methods are methods for unconstrained continuous optimization that can incorporate derivative information of up to order p > 2 by computing a step based on the pth-order Taylor expansion at each iteration. The most important among them are regularization-based tensor methods which have been shown to have optimal worst-case iteration complexity of finding an approximate minimizer. Moreover, as one might expect, this worst-case complexity improves as p increases, highlighting the potential advantage of tensor methods. Still, the global complexity results only guarantee pessimistic sublinear rates, so it is natural to ask how local rates depend on the order of the Taylor expansion p. In the case of strongly convex functions and a fixed regularization parameter, the answer is given in a paper by Doikov and Nesterov from 2022: we get pth-order local convergence of function values and gradient norms.
The value of the regularization parameter in their analysis depends on the Lipschitz constant of the pth derivative. Since this constant is not usually known in advance, adaptive regularization methods are more practical. We extend the local convergence results to locally strongly convex functions and fully adaptive methods.
We discuss how for p > 2 it becomes crucial to select the "right" minimizer of the regularized local model in each iteration to ensure all iterations are eventually successful. Counterexamples show that in particular the global minimizer of the subproblem is not suitable in general. If the right minimizer is used, the pth-order local convergence is preserved, otherwise the rate stays superlinear but with an exponent arbitrarily close to one depending on the algorithm parameters.
Tension-induced giant actuation in elastic sheets (Marc Sune) Deciphering Alzheimer's Disease: A Modelling Framework for In Silico Drug Trials (Georgia Brennan)
Abstract
Tension-induced giant actuation in elastic sheets
Dr. Marc Suñé
Buckling is normally associated with a compressive load applied to a slender structure; from railway tracks in extreme heat to microtubules in cytoplasm, axial compression is relieved by out-of-plane buckling. However, recent studies have demonstrated that tension applied to structured thin sheets leads to transverse motion that may be harnessed for novel applications, such as kirigami grippers, multi-stable `groovy-sheets', and elastic ribbed sheets that close into tubes. Qualitatively similar behaviour has also been observed in simulations of thermalized graphene sheets, where clamping along one edge leads to tilting in the transverse direction. I will discuss how this counter-intuitive behaviour is, in fact, generic for thin sheets that have a relatively low stretching modulus compared to the bending modulus, which allows `giant actuation' with moderate strain.
Almost sure convergence to a constant for a mean-aggregated term language
Abstract
17:00
Chance, luck, and ignorance: how to put our uncertainty into numbers - David Spiegelhalter
We all have to live with uncertainty about what is going to happen, what has happened, and why things turned out how they did. We attribute good and bad events as ‘due to chance’, label people as ‘lucky’, and (sometimes) admit our ignorance. I will show how to use the theory of probability to take apart all these ideas, and demonstrate how you can put numbers on your ignorance, and then measure how good those numbers are. Along the way we will look at three types of luck, and judge whether Derren Brown was lucky or unlucky when he was filmed flipping ten Heads in a row.
David Spiegelhalter was Cambridge University's first Winton Professor of the Public Understanding of Risk. He has appeared regularly on television and radio and is the author of several books, the latest of which is The Art of Uncertainty: How to Navigate Chance, Ignorance, Risk and Luck (Penguin, September 2024).
Please email @email to register to attend in person.
The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Wednesday 11 December at 5-6pm and any time after (no need to register for the online version).
The Oxford Mathematics Public Lectures are generously supported by XTX Markets.
16:00
Division rings in the service of group theory
Abstract
Embedding the group algebra into a division ring has proven to be a powerful tool for detecting structural properties of the group, especially in relation to its homology. In this talk, we will show how division rings can be used to identify residual properties of groups, one-ended groups, and coherent groups. We will place special emphasis on the class of free-by-cyclic groups to provide a clear, explicit exposition.
11:00
Quadratic and $p^\mathrm{th}$ variation of stochastic processes through Schauder expansions
Abstract
16:00
Residually finite dimensional C*-algebras arising in dynamical contexts
Abstract
A C*-algebra is said to be residually finite-dimensional (RFD) when it has `sufficiently many' finite-dimensional representations. The RFD property is an important, and still somewhat mysterious notion, with subtle connections to residual finiteness properties of groups. In this talk I will present certain characterisations of the RFD property for C*-algebras of amenable étale groupoids and for C*-algebraic crossed products by amenable actions of discrete groups, extending (and inspired by) earlier results of Bekka, Exel, and Loring. I will also explain the role of the amenability assumption and describe several consequences of our main theorems. Finally, I will discuss some examples, notably these related to semidirect products of groups.
16:00
Will large economies be stable?
Abstract
We study networks of firms in which inputs for production are not easily substitutable, as in several real-world supply chains. Building on Robert May's original argument for large ecosystems, we argue that such networks generically become dysfunctional when their size increases, when the heterogeneity between firms becomes too strong, or when substitutability of their production inputs is reduced. At marginal stability and for large heterogeneities, crises can be triggered by small idiosyncratic shocks, which lead to “avalanches” of defaults. This scenario would naturally explain the well-known “small shocks, large business cycles” puzzle, as anticipated long ago by Bak, Chen, Scheinkman, and Woodford. However, an out-of-equilibrium version of the model suggests that other scenarios are possible, in particular that of `turbulent economies’.
15:00
Studying monoids that model concurrency
Abstract
I’ll discuss joint work of mine with with Ascencio-Martin, Britnell, Duncan, Francoeurs and Koutny to set up and study algebraic models of concurrent computation.
Trace monoids were introduced by Mazurkiewicz as algebraic models of Petri nets, where some pairs of actions can be applied in either of two orders and have the same effect. Abstractly, a trace monoid is simply a right-angled Artin monoid. More recently Koutny et al. introduced the concept of a step trace monoid, which allows the additional possibility that a pair of actions may have the same effect performed simultaneously as sequentially.
I shall introduce these monoids, discuss some problems we’d like to be able to solve, and the methods with which we are trying to solve them. In particular I’ll discuss normal forms for traces, comtraces and step traces, and generalisations of Stallings folding techniques for finitely presented groups and monoids.
CANCELLED - Proof of the Deligne—Milnor conjecture
Abstract
This talk is rescheduled and will take place on 21 January 2025
14:00
Brennan Klein: Network Comparison and Graph Distances: A Primer and Open Questions
Brennan Klein is an associate research scientist at the Network Science Institute at Northeastern University, where he studies complex systems across nature and society using tools from network science and statistics. His research sits in two broad areas: First, he develops methods and theory for constructing, reconstructing, and comparing complex networks based on concepts from information theory and random graphs. Second, he uses an array of interdisciplinary approaches to document—and combat—emergent or systemic disparities across society, especially as they relate to public health and public safety. In addition to his role at Northeastern University, Brennan is the inaugural Data for Justice Fellow at the Institute on Policing, Incarceration, and Public Safety in the Hutchins Center for African and African American Studies at Harvard University. Brennan received a PhD in Network Science from Northeastern University in 2020 and a B.A. in Cognitive Science from Swarthmore College in 2014. Website: brennanklein.com. Contact: @email; @jkbren.bsky.social.
Abstract
Tight general bounds for the extremal number of 0-1 matrices
Abstract
A zero-one matrix $M$ is said to contain another zero-one matrix $A$ if we can delete some rows and columns of $M$ and replace some 1-entries with 0-entries such that the resulting matrix is $A$. The extremal number of $A$, denoted $\operatorname{ex}(n,A)$, is the maximum number of 1-entries that an $n\times n$ zero-one matrix can have without containing $A$. The systematic study of this function for various patterns $A$ goes back to the work of Furedi and Hajnal from 1992, and the field has many connections to other areas of mathematics and theoretical computer science. The problem has been particularly extensively studied for so-called acyclic matrices, but very little is known about the general case (that is, the case where $A$ is not necessarily acyclic). We prove the first asymptotically tight general result by showing that if $A$ has at most $t$ 1-entries in every row, then $\operatorname{ex}(n,A)\leq n^{2-1/t+o(1)}$. This verifies a conjecture of Methuku and Tomon.
Our result also provides the first tight general bound for the extremal number of vertex-ordered graphs with interval chromatic number two, generalizing a celebrated result of Furedi, and Alon, Krivelevich and Sudakov about the (unordered) extremal number of bipartite graphs with maximum degree $t$ in one of the vertex classes.
Joint work with Barnabas Janzer, Van Magnan and Abhishek Methuku.
13:00
Symmetry topological field theory and generalised Kramers–Wannier dualities
Abstract
A modern perspective on symmetry in quantum theories identifies the topological invariance of a symmetry operator within correlation functions as its defining property. Within this paradigm, a framework has emerged enabling a calculus of topological defects in terms of a higher-dimensional topological quantum field theory. In this seminar, I will discuss aspects of this construction for Euclidean lattice field theories. Exploiting this framework, I will present generalisations of the celebrated Kramers-Wannier duality of the Ising model, as combinations of gauging procedures and generalised Fourier transforms of the local weights encoding the dynamics. If time permits, I will discuss implications of this framework for the real-space renormalisation group flow of these theories.
16:30
Short- and long-time behavior in evolution equations: the role of the hypocoercivity index
Abstract
The "index of hypocoercivity" is defined via a coercivity-type estimate for the self-adjoint/skew-adjoint parts of the generator, and it quantifies `how degenerate' a hypocoercive evolution equation is, both for ODEs and for evolutions equations in a Hilbert space. We show that this index characterizes the polynomial decay of the propagator norm for short time and illustrate these concepts for the Lorentz kinetic equation on a torus. Discrete time analogues of the above systems (obtained via the mid-point rule) are contractive, but typically not strictly contractive. For this setting we introduce "hypocontractivity" and an "index of hypocontractivity" and discuss their close connection to the continuous time evolution equations.
This talk is based on joint work with F. Achleitner, E. Carlen, E. Nigsch, and V. Mehrmann.
References:
1) F. Achleitner, A. Arnold, E. Carlen, The Hypocoercivity Index for the short time behavior of linear time-invariant ODE systems, J. of Differential Equations (2023).
2) A. Arnold, B. Signorello, Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium, Kinetic and Related Models (2022).
3) F. Achleitner, A. Arnold, V. Mehrmann, E. Nigsch, Hypocoercivity in Hilbert spaces, J. of Functional Analysis (2025).
16:00
Heegner points and Euler systems
Abstract
Heegner points are a powerful tool for understanding the structure of the group of rational points on elliptic curves. In this talk, I will describe these points and the ideas surrounding their generalisation to other situations.
15:30
Equivariant log concavity and representation stability
Abstract
June Huh proved in 2012 that the Betti numbers of the complement of a complex hyperplane arrangement form a log concave sequence. But what if the arrangement has symmetries, and we regard the cohomology as a representation of the symmetry group? The motivating example is the braid arrangement, where the complement is the configuration space of n points in the plane, and the symmetric group acts by permuting the points. I will present an equivariant log concavity conjecture, and show that one can use representation stability to prove infinitely many cases of this conjecture for configuration spaces.
15:30
Critical phenomena in intermediate dimensions
Abstract
The talk will focus on recent developments regarding the (near-)critical behaviour of certain statistical physics models with long-range dependence in dimensions larger than 2, but smaller than 6, above which mean-field behaviour is known to set in. This “intermediate” regime remains a great challenge for mathematicians. The models revolve around a certain percolation phase transition that brings into play very natural probabilistic objects, such as random walk traces and the Gaussian free field.
14:15
Gromov-Witten theory in degenerations
Abstract
I will discuss recent and ongoing work with Davesh Maulik that explains how Gromov-Witten invariants behave under simple normal crossings degenerations. The main outcome of the study is that if a projective manifold $X$ undergoes a simple normal crossings degeneration, the Gromov-Witten theory of $X$ is determined, via universal formulas, by the Gromov-Witten theory of the strata of the degeneration. Although the proof proceeds via logarithmic geometry, the statement involves only traditional Gromov-Witten cycles. Indeed, one consequence is a folklore conjecture of Abramovich-Wise, that logarithmic Gromov-Witten theory “does not contain new invariants”. I will also discuss applications of this to a conjecture of Levine and Pandharipande, concerning the relationship between Gromov-Witten theory and the cohomology of the moduli space of curves.
Model-based (unfolding) neural networks and where to find them: from practice to theory
Abstract
In recent years, a new class of deep neural networks has emerged, which finds its roots at model-based iterative algorithms solving inverse problems. We call these model-based neural networks deep unfolding networks (DUNs). The term is coined due to their formulation: the iterations of optimization algorithms are “unfolded” as layers of neural networks, which solve the inverse problem at hand. Ever since their advent, DUNs have been employed for tackling assorted problems, e.g., compressed sensing (CS), denoising, super-resolution, pansharpening.
In this talk, we will revisit the application of DUNs on the CS problem, which pertains to reconstructing data from incomplete observations. We will present recent trends regarding the broader family of DUNs for CS and dive into their theory, which mainly revolves around their generalization performance; the latter is important, because it informs us about the behaviour of a neural network on examples it has never been trained on before.
Particularly, we will focus our interest on overparameterized DUNs, which exhibit remarkable performance in terms of reconstruction and generalization error. As supported by our theoretical and empirical findings, the generalization performance of overparameterized DUNs depends on their structural properties. Our analysis sets a solid mathematical ground for developing more stable, robust, and efficient DUNs, boosting their real-world performance.