Tue, 05 Mar 2024

14:00 - 15:00
L5

Complex crystallographic groups and Seiberg--Witten integrable systems

Oleg Chalykh
(University of Leeds)
Abstract

For any smooth complex variety Y with an action of a finite group W, Etingof defines the global Cherednik algebra H_c and its spherical subalgebra B_c as certain sheaves of algebras over Y/W. When Y is an n-dimensional abelian variety, the algebra of global sections of B_c is a polynomial algebra on n generators, as shown by Etingof, Felder, Ma, and Veselov. This defines an integrable system on Y. In the case of Y being a product of n copies of an elliptic curve E and W=S_n, this reproduces the usual elliptic Calogero­­--Moser system. Recently, together with P. Argyres and Y. Lu, we proposed that many of these integrable systems at the classical level can be interpreted as Seiberg­­--Witten integrable systems of certain super­symmetric quantum field theories. I will describe our progress in understanding this connection for groups W=G(m, 1, n), corresponding to the case Y=E^n where E is an elliptic curves with Z_m symmetry, m=2,3,4,6. 

Tue, 05 Mar 2024

14:00 - 14:30
L6

A multilinear Nyström algorithm for low-rank approximation of tensors in Tucker format

Alberto Bucci
(University of Pisa)
Abstract

The Nyström method offers an effective way to obtain low-rank approximation of SPD matrices, and has been recently extended and analyzed to nonsymmetric matrices (leading to the randomized, single-pass, streamable, cost-effective, and accurate alternative to the randomized SVD, and it facilitates the computation of several matrix low-rank factorizations. In this presentation, we take these advancements a step further by introducing a higher-order variant of Nyström's methodology tailored to approximating low-rank tensors in the Tucker format: the multilinear Nyström technique. We show that, by introducing appropriate small modifications in the formulation of the higher-order method, strong stability properties can be obtained. This algorithm retains the key attributes of the generalized Nyström method, positioning it as a viable substitute for the randomized higher-order SVD algorithm.

Tue, 05 Mar 2024
13:00
L3

Double scaled SYK and the quantum geometry of 3D de Sitter space

Herman Verlinde
(Princeton)
Abstract

In this talk, I describe an exact duality between the double scaling limit of the SYK model and quantum geometry of de Sitter spacetime in three dimensions. The duality maps the so-called chord rules that specify the exact SYK correlations functions to the skein relations that govern the topological interactions between world-line operators in 3D de Sitter gravity.

This talk is part of the series of Willis Lamb Lectures in Theoretical Physics. Herman Verlinde is the Lamb Lecturer of 2024.

Tue, 05 Mar 2024
11:00
Lecture room 5

Level lines of the massive planar Gaussian free field

Léonie Papon
(University of Durham)
Abstract

The massive planar Gaussian free field (GFF) is a random distribution defined on a subset of the complex plane. As a random distribution, this field a priori does not have well-defined level lines. In this talk, we give a meaning to this concept by constructing a coupling between a massive GFF and a random collection of loops, called massive CLE_4, in which the loops can naturally be interpreted as the level lines of the field. This coupling is constructed by appropriately reweighting the law of the standard GFF-CLE_4 coupling and this construction can be seen as a conditional version of the path-integral formulation of the massive GFF. We then relate massive CLE_4 to a massive version of the Brownian loop soup. This provides a more direct construction of massive CLE_4 and proves a conjecture of Camia.

Mon, 04 Mar 2024
16:00
L2

The dispersion method and beyond: from primes to exceptional Maass forms

Alexandru Pascadi
(University of Oxford)
Abstract
The dispersion method has found an impressive number of applications in analytic number theory, from bounded gaps between primes to the greatest prime factors of quadratic polynomials. The method requires bounding certain exponential sums, using deep inputs from algebraic geometry, the spectral theory of GL2 automorphic forms, and GLn automorphic L-functions. We'll give a broad outline of this process, which combines various types of number theory; time permitting, we'll also discuss the key ideas behind some new results.
 
Mon, 04 Mar 2024
15:30
L4

Rigidity of ideal symmetric sets

Stephan Stadler
(Max Planck Institute for Mathematics)
Abstract

A subset in the ideal boundary of a CAT(0) space is called symmetric if every complete geodesic with one ideal boundary point
in the set has both ideal boundary points in the set. In the late 80s Eberlein proved that if a Hadamard manifold contains a non-trivial closed symmetric  subset in its ideal boundary, then its holonomy group cannot act transitively. This leads to rigidty via
the Berger-Simons Theorem. I will discuss rigidity of ideal symmetric sets in the general context of locally compact geodesically complete
CAT(0) spaces.
 

Mon, 04 Mar 2024
15:30
Lecture room 5

The Allen-Cahn equation with weakly critical initial datum

Dr Tommaso Rosati
(Dept. Mathematics, University of Warwick)
Abstract

Inspired by questions concerning the evolution of phase fields, we study the Allen-Cahn equation in dimension 2 with white noise initial datum. In a weak coupling regime, where the nonlinearity is damped in relation to the smoothing of the initial condition, we prove Gaussian fluctuations. The effective variance that appears can be described as the solution to an ODE. Our proof builds on a Wild expansion of the solution, which is controlled through precise combinatorial estimates. Joint works with Simon Gabriel, Martin Hairer, Khoa Lê and Nikos Zygouras.

Mon, 04 Mar 2024
14:15
L4

Significance of rank zero Donaldson-Thomas (DT) invariants in curve counting theories

Sohelya Feyzbakhsh
(Imperial College London)
Abstract
Fix a Calabi-Yau 3-fold X of Picard rank one satisfying the Bogomolov-Gieseker conjecture of Bayer-Macrì-Toda, such as the quintic 3-fold. I will first describe two methods to achieve explicit formulae relating rank zero Donaldson-Thomas (DT) invariants to Pandharipande-Thomas (PT) invariants using wall-crossing with respect to weak Bridgeland stability conditions on X. As applications, I will find sharp Castelnuovo-type bounds for PT invariants and explain how combining these explicit formulas with S-duality in physics enlarges the known table of Gopakumar-Vafa (GV) invariants. The second part is joint work with string theorists Sergei Alexandrov, Albrecht Klemm, Boris Pioline, and Thorsten Schimannek.
Mon, 04 Mar 2024

14:00 - 15:00
Lecture Room 3

On transport methods for simulation-based inference and data assimilation

Prof Youssef Marzouk
(MIT)
Abstract

Many practical Bayesian inference problems fall into the simulation-based or "likelihood-free" setting, where evaluations of the likelihood function or prior density are unavailable or intractable; instead one can only draw samples from the joint parameter-data prior. Learning conditional distributions is essential to the solution of these problems. 
To this end, I will discuss a powerful class of methods for conditional density estimation and conditional simulation based on transportation of measure. An important application for these methods lies in data assimilation for dynamical systems, where transport enables new approaches to nonlinear filtering and smoothing. 
To illuminate some of the theoretical underpinnings of these methods, I will discuss recent work on monotone map representations, optimization guarantees for learning maps from data, and the statistical convergence of transport-based density estimators.
 

Fri, 01 Mar 2024
16:00
L1

Departmental Colloquium: The role of depth in neural networks: function space geometry and learnability

Professor Rebecca Willett (University of Chicago)
Further Information

Rebecca Willett is a Professor of Statistics and Computer Science & the Faculty Director of AI at the Data Science Institute, with a courtesy appointment at the Toyota Technological Institute at Chicago. Her research is focused on machine learning foundations, scientific machine learning, and signal processing. She is the Deputy Director for Research at the NSF-Simons Foundation National Institute for Theory and Mathematics in Biology and a member of the Executive Committee for the NSF Institute for the Foundations of Data Science. She is the Faculty Director of the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship and helps direct the Air Force Research Lab University Center of Excellence on Machine Learning

Abstract

Neural network architectures play a key role in determining which functions are fit to training data and the resulting generalization properties of learned predictors. For instance, imagine training an overparameterized neural network to interpolate a set of training samples using weight decay; the network architecture will influence which interpolating function is learned. 

In this talk, I will describe new insights into the role of network depth in machine learning using the notion of representation costs – i.e., how much it “costs” for a neural network to represent some function f. Understanding representation costs helps reveal the role of network depth in machine learning. First, we will see that there is a family of functions that can be learned with depth-3 networks when the number of samples is polynomial in the input dimension d, but which cannot be learned with depth-2 networks unless the number of samples is exponential in d. Furthermore, no functions can easily be learned with depth-2 networks while being difficult to learn with depth-3 networks. 

Together, these results mean deeper networks have an unambiguous advantage over shallower networks in terms of sample complexity. Second, I will show that adding linear layers to a ReLU network yields a representation cost that favors functions with latent low-dimension structure, such as single- and multi-index models. Together, these results highlight the role of network depth from a function space perspective and yield new tools for understanding neural network generalization. 

Fri, 01 Mar 2024

15:00 - 16:00
L6

Applied Topology TBC

Zoe Cooperband
(University of Pennsylvania)
Further Information

Dr  Zoe Copperband is a member of the Penn Engineering GRASP Laboratory. Her recent preprint, Towards Homological Methods in Graphic Statics, can be found here.

Fri, 01 Mar 2024

14:00 - 15:00
L3

Extreme pushed and pulled fronts

Professor John King
(School of Mathematical Sciences University of Nottingham)
Abstract

I shall say some stuff about quasilinear reaction-diffusion equations, motivated by tissue growth in particular.

Fri, 01 Mar 2024
12:00
L3

Motivic coaction and single-valued map of polylogarithms from zeta generators

Hadleigh Frost
(Merton College Oxford)
Abstract
The motivic coaction and single-valued map play an important role in our understanding of perturbative string theory. We use a new Lie-algebraic approach to give new formulas for the motivic coaction and single-valued map of multiple polylogarithms in any number of variables. The new formulas are computationally useful and give answers (if desired) directly in a fibration basis. Our key idea is to understand extensions of the braid algebra, that "encode" the appearance of multiple zeta values in the formulas. Speculatively, this idea could help to understand these important structures beyond genus zero.
Fri, 01 Mar 2024

12:00 - 13:00
Quillen Room

Algebra is Hard, Combinatorics is Simple(r)

Zain Kapadia
(Queen Mary University London)
Abstract

Questions in algebra, while deep and interesting, can be incredibly difficult. Thankfully, when studying the representation theory of the symmetric groups, one can often take algebraic properties and results and write them in the language of combinatorics; where one has a wide variety of tools and techniques to use. In this talk, we will look at the specific example of the submodule structure of 2-part Specht modules in characteristic 2, and answer which hook Specht modules are uniserial in characteristic 2. We will not need to assume the Riemann hypothesis for this talk.

Thu, 29 Feb 2024

17:00 - 18:00

Omega-categorical groups and Lie algebras

Christian d'Elbée
(School of Mathematics, University of Leeds)
Abstract

A structure is omega-categorical if its theory has a unique countable model (up to isomorphism). We will survey some old results concerning the Apps-Wilson structure theory for omega-categorical groups and state a conjecture of Wilson from the 80s on omega-categorical characteristically simple groups. We will also discuss the analogous of Wilson’s conjecture for Lie algebras and present some connections with the restricted Burnside problem.

Thu, 29 Feb 2024
17:00
Lecture Theatre 1

Mobilizing Mathematics for the Fight Against Cancer - Trachette Jackson

Trachette Jackson
Further Information

Mathematical oncologists apply mathematical and computational models to every aspect of cancer biology, from tumor initiation to malignant spread and treatment response. A substantial amount of medical research now focuses on the molecular biology of individual tumors to selectively target pathways involved in tumor progression, leading to careful manipulation of these pathways, and new cell-specific approaches to cancer therapy are now being developed. At the same time, advances in cancer immunotherapies have led to a reemergence of their use and effectiveness. Using data-driven computational models is a powerful and practical way to investigate the therapeutic potential of novel combinations of these two very different strategies for clinical cancer treatment.

Trachette will showcase mathematical models designed to optimize targeted drug treatment strategies in combination with immunotherapy, to gain a more robust understanding of how specific tumor mutations affect the immune system and ultimately impact combination therapy. Combined with existing and newly generated experimental data, these models are poised to improve the ability to connect promising drugs for clinical trials and reduce the time and costs of transitioning novel therapeutic approaches from “equations to bench to bedside.”

Trachette Jackson is Professor of Mathematics at the University of Michigan and recipient of many awards for her work in her field and for her commitment to increasing opportunities for girls, women, and underrepresented minority students.

Please email @email to register to attend in person.

The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Thursday 21 March at 5-6pm and any time after (no need to register for the online version).

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Banner for event
Thu, 29 Feb 2024
16:00
L3

Martingale Benamou-Brenier: arthimetic and geometric Bass martingales

Professor Jan Obloj
(Mathematical Institute)
Further Information

Please join us for refreshments outside L3 from 1530.

Abstract

Optimal transport (OT) proves to be a powerful tool for non-parametric calibration: it allows us to take a favourite (non-calibrated) model and project it onto the space of all calibrated (martingale) models. The dual side of the problem leads to an HJB equation and a numerical algorithm to solve the projection. However, in general, this process is costly and leads to spiky vol surfaces. We are interested in special cases where the projection can be obtained semi-analytically. This leads us to the martingale equivalent of the seminal fluid-dynamics interpretation of the optimal transport (OT) problem developed by Benamou and Brenier. Specifically, given marginals, we look for the martingale which is the closest to a given archetypical model. If our archetype is the arithmetic Brownian motion, this gives the stretched Brownian motion (or the Bass martingale), studied previously by Backhoff-Veraguas, Beiglbock, Huesmann and Kallblad (and many others). Here we consider the financially more pertinent case of Black-Scholes (geometric BM) reference and show it can also be solved explicitly. In both cases, fast numerical algorithms are available.

Based on joint works with Julio Backhoff, Benjamin Joseph and Gregoire Leoper.  

This talk reports a work in progress. It will be done on a board.

Thu, 29 Feb 2024
16:00
Lecture Room 4

A new approach to modularity

Andrew Wiles
(University of Oxford)
Abstract

In the 1960's Langlands proposed a generalisation of Class Field Theory. I will review this and describe a new approach using the trace formua as well as some analytic arguments reminiscent of those used in the classical case. In more concrete terms the problem is to prove general modularity theorems, and I will explain the progress I have made on this problem.

Thu, 29 Feb 2024
14:00
N3.12

Geometric Quantization

Adam Kmec
Abstract

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 29 Feb 2024

14:00 - 15:00
Lecture Room 3

On the use of "conventional" unconstrained minimization solvers for training regression problems in scientific machine learning

Stefano Zampini
(King Abdullah University of Science and Technology (KAUST))
Abstract

In recent years, we have witnessed the emergence of scientific machine learning as a data-driven tool for the analysis, by means of deep-learning techniques, of data produced by computational science and engineering applications.  At the core of these methods is the supervised training algorithm to learn the neural network realization, a highly non-convex optimization problem that is usually solved using stochastic gradient methods.

However, distinct from deep-learning practice, scientific machine-learning training problems feature a much larger volume of smooth data and better characterizations of the empirical risk functions, which make them suited for conventional solvers for unconstrained optimization.

In this talk, we empirically demonstrate the superior efficacy of a trust region method based on the Gauss-Newton approximation of the Hessian in improving the generalization errors arising from regression tasks when learning surrogate models for a wide range of scientific machine-learning techniques and test cases. All the conventional solvers tested, including L-BFGS and inexact Newton with line-search, compare favorably, either in terms of cost or accuracy, with the adaptive first-order methods used to validate the surrogate models.

Thu, 29 Feb 2024

11:00 - 12:00
C3

Coherent group actions

Martin Bays
(University of Oxford)
Abstract

I will discuss aspects of some work in progress with Tingxiang Zou, in which we continue the investigation of pseudofinite sets coarsely respecting structures of algebraic geometry, focusing on algebraic group actions. Using a version of Balog-Szemerédi-Gowers-Tao for group actions, we find quite weak hypotheses which rule out non-abelian group actions, and we are applying this to obtain new Elekes-Szabó results in which the general position hypothesis is fully weakened in one co-ordinate.

Wed, 28 Feb 2024

16:00 - 17:00
L6

Revisiting property (T)

Ismael Morales
(University of Oxford)
Abstract

Property (T) was introduced by Kazhdan in the sixties to show that lattices in higher rank semisimple Lie groups are finitely generated. We will discuss some classical examples of groups that satisfy this property, with a particular focus on SL(3, R).

Wed, 28 Feb 2024
15:00
Lecture room 5

Mathematics of magic angles for twisted bilayer graphene.

Prof Maciej Zworski
(University of California, Berkeley)
Further Information

This is a joint seminar with Random Matrix Theory and Oxford Centre for Nonlinear Partial Differential Equations.

Abstract

Magic angles refer to a remarkable theoretical (Bistritzer--MacDonald, 2011) and experimental (Jarillo-Herrero et al 2018) discovery, that two sheets of graphene twisted by a certain (magic) angle display unusual electronic properties such as superconductivity.

 

Mathematically, this is related to having flat bands of nontrivial topology for the corresponding periodic Hamiltonian and their existence be shown for the chiral model of twisted bilayer graphene (Tarnopolsky-Kruchkov-Vishwanath, 2019). A spectral characterization of magic angles (Becker--Embree--Wittsten--Z, 2021, Galkowski--Z, 2023) also produces complex values and the distribution of their reciprocals looks remarkably like a distribution of scattering resonances for a two dimensional problem, with the real magic angles corresponding to anti-bound states. I will review various results on that distribution as well as on the properties of the associated eigenstates.

 

The talk is based on joint works with S Becker, M Embree, J Galkowski, M Hitrik, T Humbert and J Wittsten

Wed, 28 Feb 2024
12:00
L6

Non-regular spacetime geometry, curvature and analysis

Clemens Saemann
(Mathematical Institute, University of Oxford)
Abstract

I present an approach to Lorentzian geometry and General Relativity that does neither rely on smoothness nor
on manifolds, thereby leaving the framework of classical differential geometry. This opens up the possibility to study
curvature (bounds) for spacetimes of low regularity or even more general spaces. An analogous shift in perspective
proved extremely fruitful in the Riemannian case (Alexandrov- and CAT(k)-spaces). After introducing the basics of our
approach, we report on recent progress in developing a Sobolev calculus for time functions on such non-smooth
Lorentzian spaces. This seminar talk can also be viewed as a primer and advertisement for my mini course in
May: Current topics in Lorentzian geometric analysis: Non-regular spacetimes

Tue, 27 Feb 2024
16:00
L6

Dynamics in interlacing arrays, conditioned walks and the Aztec diamond

Theodoros Assiotis
(University of Edinburgh)
Abstract

I will discuss certain dynamics of interacting particles in interlacing arrays with inhomogeneous, in space and time, jump probabilities and their relations to conditioned random walks and random tilings of the Aztec diamond.