# Past Geometry and Analysis Seminar

Work of Schoen--Yau in the 70's/80's shows that area-minimizing (actually stable) two-sided surfaces in three-manifolds of non-negative scalar curvature are of a special topological type: a sphere, torus, plane or cylinder. The torus and cylinder cases are "borderline" for this estimate. It was shown by Cai--Galloway in the late 80's that the torus can only occur in a very special ambient three manifold. We complete the story by showing that a similar result holds for the cylinder. The talk should be accessible to those with a basic knowledge of curvature in Riemannian geometry.

After reviewing the main results relating holomorphic Poisson geometry to generalized Kahler structures, I will explain some recent progress in deforming generalized Kahler structures. I will also describe a new way to view generalized kahler geometry purely in terms of Poisson structures.

In the same way that the classical Torelli theorem determines a curve from its polarized Jacobian we show that moduli spaces of parabolic bundles and parabolic Higgs bundles over a compact Riemann surface X also determine X. We make use of a theorem of Hurtubise on the geometry of algebraic completely integrable systems in the course of the proof. This is a joint work with I. Biswas and T. Gómez

I will discuss theta-stability, a framework for analyzing moduli problems in algebraic geometry by finding a special kind of stratification called a theta-stratification, a notion which generalizes the Kempf-Ness stratification in geometric invariant theory and the Harder-Narasimhan-Shatz stratification of the moduli of vector bundles on a Riemann surface.

The famous Greek astronomer Ptolemy created his well-known table of chords in order to aid his astronomical observations. This table was based on the renowned relation between the four sides and the two diagonals of a quadrilateral whose vertices lie on a common circle.

In 2002, the mathematicians Fomin and Zelevinsky generalised this relation to introduce a new structure called cluster algebra. This is a set of clusters, each cluster made of n numbers called cluster variables. All clusters are obtained from some initial cluster by a sequence of transformations called mutations. Cluster algebras appear in a variety of topics, including total positivity, number theory, Teichm\”uller theory and computer graphics. A quantisation procedure for cluster algebras was proposed by Berenstein and Zelevinsky in 2005.

After introducing the basics about cluster algebras, in this talk we will link cluster algebras to the theory of Painlevé equations. This link will provide the foundations to introduce a new class of cluster algebras of geometric type. We will show that the quantisation of these new cluster algebras provide a geometric setting for the Berenstein–Zelevinsky construction.