Let ${\cal E}$ be a family of elliptic curves over a base variety defined over $\mathbb C$. An additive extension ${\cal G}$ of ${\cal E}$ is a family of algebraic groups which fits into an exact sequence of group schemes $0\rightarrow {\mathbb G}_{\rm a}\rightarrow {\cal G}\rightarrow {\cal E}\rightarrow 0$. We can define the special subvarieties of ${\cal G}$ to be families of algebraic groups over the same base contained in ${\cal G}$. The relative Manin-Mumford conjecture suggests that the intersection of a curve in ${\cal G}$ with the special subvarieties of dimension 0 is contained in a finite union of special subvarieties.

To prove this we can assume that the family ${\cal E}$ is the Legendre family and then follow the strategy employed by Masser-Zannier for their proof of the relative Manin-Mumford conjecture for the fibred product of two legendre families. This has applications to classical problems such as the theory of elementary integration and Pell's equation in polynomials.