Past Logic Seminar

26 February 2015
17:30
William Anscombe
Abstract

We present some recent work - joint with Arno Fehm - in which we give an `existential Ax-Kochen-Ershov principle' for equicharacteristic henselian valued fields. More precisely, we show that the existential theory of such a valued field depends only on the existential theory of the residue field. In residue characteristic zero, this result is well-known and follows from the classical Ax-Kochen-Ershov Theorems. In arbitrary (but equal) characteristic, our proof uses F-V Kuhlmann's theory of tame fields. One corollary is an unconditional proof that the existential theory of F_q((t)) is decidable. We will explain how this relates to the earlier conditional proof of this result, due to Denef and Schoutens.
 

19 February 2015
17:30
Alessandro Berarducci
Abstract

The field of transseries was introduced by Ecalle to give a solution to Dulac's problem, a weakening of Hilbert's 16th problem. They form an elementary extension of the real exponential field and have received the attention of model theorists. Another such elementary extension is given by Conway's surreal numbers, and various connections with the transseries have been conjectured, among which the possibility of introducing a Hardy type derivation on the surreal numbers. I will present a complete solution to these conjectures obtained in collaboration with Vincenzo Mantova.
 

12 February 2015
17:30
Jamshid Derakhshan
Abstract
Recently Kaplan, Marcinek, and Takloo-Bighash have proved an asymptotic formula for the number of orders of bounded discriminant  in a given quintic number field. An essential ingredient in their poof is a p-adic volume formula.  I will present joint results with Ramin Takloo Bighash on model-theoretic generalizations of the volume formulas and discuss connections to number theory.

 

5 February 2015
17:30
Nicolai Vorobjov
Abstract

Let $K\subset {\mathbb R}$ be a compact definable set in an o-minimal structure over $\mathbb R$, e.g. a semi-algebraic or a real analytic set. A definable family $\{S_\delta\ |  0<\delta\in{\mathbb R}\}$ of compact subsets of $K$, is called a monotone family if $S_\delta\subset S_\eta$ for all sufficiently small $\delta>\eta>0$. The main result in the talk is that when $\dim K=2$ or $\dim K=n=3$ there exists a definable triangulation of $K$ such that for each (open) simplex $\Lambda$ of the triangulation and each small enough $\delta>0$, the intersections $S_\delta\cap\Lambda$ is equivalent to one of five (respectively, nine) standard families in the standard simplex (the equivalence relation and a standard family will be formally defined). As a consequence, we prove the two-dimensional case of the topological conjecture on approximation of definable sets by compact families.

This is joint work with Andrei Gabrielov (Purdue).

29 January 2015
17:30
Harry Schmidt
Abstract

Let ${\cal E}$ be a family of elliptic curves over a base variety defined over $\mathbb C$. An additive extension ${\cal G}$ of ${\cal E}$ is a family of algebraic groups which fits into an exact sequence of group schemes $0\rightarrow {\mathbb G}_{\rm a}\rightarrow {\cal G}\rightarrow {\cal E}\rightarrow 0$. We can define the special subvarieties of ${\cal G}$ to be families of algebraic groups over the same base contained in ${\cal G}$. The relative Manin-Mumford conjecture suggests that the intersection of a curve in ${\cal G}$ with the special subvarieties of dimension 0 is contained in a finite union of special subvarieties.

To prove this we can assume that the family ${\cal E}$ is the Legendre family and then follow the strategy employed by Masser-Zannier for their proof of the relative Manin-Mumford conjecture for the fibred product of two legendre families. This has applications to classical problems such as the theory of elementary integration and Pell's equation in polynomials.

4 December 2014
17:30
Adam Harris
Abstract

I will outline some recent work with Jonathan Kirby regarding the first stage in the construction of the pseudo j-function. In particular, I will go through the construction of the analogue of the canonical countable pseudo exponential field as the "Fraisse limit" of a category of "partial j-fields". Although I will be talking about the j-function throughout the talk, it is not necessary to know anything about the j-function to get something from the talk. In particular, even if you don't know what the j-function is, you will still hopefully have an understanding of how to construct the countable pseudo-exp by the end of the talk.
 

13 November 2014
17:30
Robert Henderson
Abstract

Little is known about C_exp, the complex field with the exponential function. Model theoretically it is difficult due to the definability of the integers (so its theory is not stable), and a lack of clear algebraic structure; for instance, it is not known whether or not pi+e is irrational. In order to study C_exp, Boris Zilber constructed a class of pseudo-exponential fields which satisfy all the properties we desire of C_exp. This class is categorical for every uncountable cardinal, and other more general classes have been defined. I shall define the three main classes of exponential fields that I study, one of which being Zilber's class, and show that they exhibit "stable-like" behaviour modulo the integers by defining a notion of independence for each class. I shall also explicitly apply one of these independence relations to show that in the class of exponential fields ECF, types that are orthogonal to the kernel are exactly the generically stable types.
 

6 November 2014
17:30
Abstract

The aim of this talk is to provide a general setting in which a number of important dualities in mathematics can be framed uniformly.  The setting comes about as a natural generalisation of the Galois connection between ideals of polynomials with coefficients in a field K and affine varieties in K^n.  The general picture that comes into sight is that the topological representations of Stone, Priestley, Baker-Beynon, Gel’fand, or Pontryagin are to their respective classes of structures just as affine varieties are to K-algebras.

28 October 2014
17:00
Mike Prest
Abstract

Note: joint with Algebra seminar.

String algebras are tame - their finite-dimensional representations have been classified - and the Auslander-Reiten quiver of such an algebra shows some of the morphisms between them.  But not all.  To see the morphisms which pass between components of the Auslander-Reiten quiver, and so obtain a more complete picture of the category of representations, we should look at certain infinite-dimensional representations and use ideas and techniques from the model theory of modules.

This is joint work with Rosie Laking and Gena Puninski:
G. Puninski and M. Prest,  Ringel's conjecture for domestic string algebras, arXiv:1407.7470;
R. Laking, M. Prest and G. Puninski, Krull-Gabriel dimension of domestic string algebras, in preparation.

Pages