Forthcoming events in this series


Thu, 23 Oct 2014

16:00 - 17:00
L5

Şoför İş İlanları

Julio Andrade
(Oxford)
Further Information

Şoför iş ilanları: https://www.soforilan.com/

Abstract

In this seminar I will discuss a function field analogue of classical problems in analytic number theory, concerning the auto-correlations of divisor functions, in the limit of a large finite field.

Thu, 16 Oct 2014

16:00 - 17:00
L5

THE STRUCTURE OF J_0(N)[m] AT AN EISENSTEIN PRIME m

Hwajong Yoo
(University of Luxembourg)
Abstract

In this talk, we will discuss the dimension of $J_0(N)[m]$ at an Eisenstein prime m for
square-free level N. We will also study the structure of $J_0(N)[m]$ as a Galois module.
This work generalizes Mazur’s work on Eisenstein ideals of prime level to the case of
arbitrary square-free level up to small exceptional cases.

Thu, 12 Jun 2014

16:00 - 17:00
L5

A homotopy exact sequence and unipotent fundamental groups over function fields

Christopher Lazda
(Imperial College London)
Abstract

If X/F is a smooth and proper variety over a global function field of

characteristic p, then for all l different from p the co-ordinate ring of the l-adic

unipotent fundamental group is a Galois representation, which is unramified at all

places of good reduction. In this talk, I will ask the question of what the correct

p-adic analogue of this is, by spreading out over a smooth model for C and proving a

version of the homotopy exact sequence associated to a fibration. There is also a

version for path torsors, which enables me to define an function field analogue of

the global period map used by Minhyong Kim to study rational points.

Thu, 05 Jun 2014

16:00 - 17:00
L5

An alternative approach to analytic number theory

Andrew Granville
(University of Montreal)
Abstract

For the last few years Soundararajan and I have been developing an alternative "pretentious" approach to analytic number theory. Recently Harper established a more intuitive proof of Halasz's Theorem, the key result in the area, which has allowed the three of us to provide new (and somewhat simpler) proofs to several difficult theorems (like Linnik's Theorem), as well as to suggest some new directions. We shall review these developments in this talk.

Thu, 29 May 2014

16:00 - 17:00
L5

The algebraicity of sieved sets and rational points on curves

Miguel Walsh
(University of Oxford)
Abstract
We will discuss some connections between the polynomial method, sieve theory, inverse problems in arithmetic combinatorics and the estimation of rational points on curves. Our motivating questions will be to classify those sets that are irregularly distributed in residue classes and to understand how many rational points of bounded height can a curve of fixed degree have.
Thu, 15 May 2014

16:00 - 17:00
L5

Analytic p-adic L-functions

David Hansen
(Institut de mathématiques de Jussieu)
Abstract

I'll sketch a construction which associates a canonical p-adic L-function with a 'non-critically refined' cohomological cuspidal automorphic representation of GL(2) over an arbitrary number field F, generalizing and unifying previous results of many authors. These p-adic L-functions have good interpolation and growth properties, and they vary analytically over eigenvarieties. When F=Q this reduces to a construction of Pollack and Stevens. I'll also explain where this fits in the general picture of Iwasawa theory, and I'll point towards the iceberg of which this construction is the tip.

Wed, 14 May 2014

15:00 - 16:00
L6

Construction of p-adic L-functions for unitary groups

Michael Harris
(Columbia University (New York))
Abstract

This is a report on joint work (still in progress) with Ellen Eischen, Jian-Shu Li,
and Chris Skinner.  I will describe the general structure of our construction of p-adic L-functions
attached to families of ordinary holomorphic modular forms on Shimura varieties attached to
unitary groups.  The complex L-function is studied by means of the doubling method;
its p-adic interpolation applies adelic representation theory to Ellen Eischen's Eisenstein 
measure.

Thu, 01 May 2014

16:00 - 17:00
L5

Effective Ratner Theorem for $ASL(2, R)$ and the gaps of the sequence $\sqrt n$ modulo 1

Ilya Vinogradov
(University of Bristol)
Abstract

Let $G=SL(2,\R)\ltimes R^2$ and $\Gamma=SL(2,Z)\ltimes Z^2$. Building on recent work of Strombergsson we prove a rate of equidistribution for the orbits of a certain 1-dimensional unipotent flow of $\Gamma\G$, which projects to a closed horocycle in the unit tangent bundle to the modular surface. We use this to answer a question of Elkies and McMullen by making effective the convergence of the gap distribution of $\sqrt n$ mod 1.

Thu, 13 Mar 2014

16:00 - 17:00
L5

Arithmetic of abelian varieties over function fields and an application to anabelian geometry.

Mohamed Saidi
(Exeter)
Abstract

We investigate certain (hopefully new) arithmetic aspects of abelian varieties defined over function fields of curves over finitely generated fields. One of the key ingredients in our investigation is a new specialisation theorem a la N\'eron for the first Galois cohomology group with values in the Tate module, which generalises N\'eron specialisation theorem for rational points. Also, among other things, we introduce a discrete version of Selmer groups, which are finitely generated abelian groups. We also discuss an application of our investigation to anabelian geometry (joint work with Akio Tamagawa).

Thu, 06 Mar 2014

16:00 - 17:00
L5

Isogeny classes of abelian varieties and weakly special subvarieties

Martin Orr
(UCL)
Abstract
Let Z be a subvariety of the moduli space of abelian varieties, and suppose that Z contains a dense set of points for which the corresponding abelian varieties are isogenous. A corollary of the Zilber-Pink conjecture predicts that Z is a weakly special subvariety. I shall discuss the proof of this conjecture in the case when Z is a curve and obstacles to its proof for higher dimensions.

For Logic Seminar: Note change of time and place.

Thu, 20 Feb 2014

16:00 - 17:00
L6

From quadratic polynomials and continued fractions to modular forms

Paloma Bengoechea
(York)
Abstract
Zagier studied in 1999 certain real functions defined in a very simple way as sums of powers of quadratic polynomials with integer coefficients. These functions give the even parts of the period polynomials of the modular forms which are the coefficients in Fourier expansion of the kernel function for Shimura-Shintani correspondence. He conjectured for these sums a representation in terms of a finite set of polynomials coming from reduction of binary quadratic forms and the infinite set of transformations occuring in a continued fraction algorithm of the real variable. We will prove two different such representations, which imply the exponential convergence of the sums.

For Logic Seminar: Note change of time and location!

Thu, 13 Feb 2014

16:00 - 17:00
L5

Covering systems of congruences

Bob Hough
(Oxford University)
Abstract

A distinct covering system of congruences is a collection

\[

(a_i \bmod m_i), \qquad 1\ \textless\ m_1\ \textless\ m_2\ \textless\ \ldots\ \textless\ m_k

\]

whose union is the integers. Erd\"os asked whether there are covering systems for which $m_1$ is arbitrarily large. I will describe my negative answer to this problem, which involves the Lov\'{a}sz Local Lemma and the theory of smooth numbers.

Thu, 06 Feb 2014

16:30 - 17:30
L5

Hartmanis-Stearns conjecture and Mahler's method

Evgeniy Zorin
(York)
Abstract
Hartmanis-Stearns conjecture states that any number that can be computed in a real time by a multitape Turing machine is either rational or transcendental, but never irrational algebraic. I will discuss approaches of the modern transcendence theory to this question as well as some results in this direction.

Note: Change of time and (for Logic) place! Joint with Number Theory (double header)

Thu, 06 Feb 2014

15:00 - 16:00
L5

An Euler system of diagonal cycles and the Birch and Swinnerton-Dyer conjecture for non-abelian twists of elliptic curves.

Victor Rotger
(Universitat Politècnica de Catalunya · BarcelonaTech)
Abstract

The goal of this lecture is describing recent joint work with Henri Darmon, in which we construct an Euler system of twisted Gross-Kudla diagonal cycles that allows us to prove, among other results, the following statement (under a mild non-vanishing hypothesis that we shall make explicit):

Let $E/\mathbb{Q}$ be an elliptic curve and $K=\mathbb{Q}(\sqrt{D})$ be a real quadratic field. Let $\psi: \mathrm{Gal}(H/K) \rightarrow \mathbb{C}^\times$ be an anticyclotomic character. If $L(E/K,\psi,1)\ne 0$ then the $\psi$-isotypic component of the Mordell-Weil group $E(H)$ is trivial.

Such a result was known to be a consequence of the conjectures on Stark-Heegner points that Darmon formulated at the turn of the century. While these conjectures still remain highly open, our proof is unconditional and makes no use of this theory.

Thu, 30 Jan 2014

16:00 - 17:00
L5

Modular forms, Eisenstein series and the ternary divisor function

Emmanuel Kowalski
(ETH Zuerich)
Abstract

After a short survey of the notion of level of distribution for
arithmetic functions, and its importance in analytic number theory, we
will explain how our recent studies of twists of Fourier coefficients of
modular forms (and especially Eisenstein series) by "trace functions"
lead to an improvement of the results of Friedlander-Iwaniec and
Heath-Brown for the ternary divisor function in arithmetic progressions
to prime moduli.

This is joint work with É. Fouvry and Ph. Michel.

Thu, 23 Jan 2014

16:00 - 17:00
L5

Elliptic Curves over Real Quadratic Fields are Modular.

Samir Siksek
(University of Warwick)
Abstract

We combine recent breakthroughs in modularity lifting with a
3-5-7 modularity switching argument to deduce modularity of elliptic curves over real
quadratic fields. We
discuss the implications for the Fermat equation. In particular we
show that if d is congruent
to 3 modulo 8, or congruent to 6 or 10 modulo 16, and $K=Q(\sqrt{d})$
then there is an
effectively computable constant B depending on K, such that if p>B is prime,
and $a^p+b^p+c^p=0$ with a,b,c in K, then abc=0.   This is based on joint work with Nuno Freitas (Bayreuth) and Bao Le Hung (Harvard).

Fri, 06 Dec 2013
16:00
L1

Special numbers and special functions related to Ramanujan's mock modular forms

Ken Ono
(Emory University)
Abstract

 This lecture will cover two recent works on the mock modular
forms of Ramanujan.

I. Solution of Ramanujan's original conjectures about these functions.
(Joint work with Folsom and Rhoades)

II. A new theorem that mock modular forms are "generating functions" for
central L-values and derivatives of quadratic twist L-functions.
(Joint work with Alfes, Griffin, Rolen).