Forthcoming events in this series


Mon, 13 Oct 2008
15:45
Oxford-Man Institute

Dewonderizing a result of Carne about random walks

Mr. Remi Peyre
(ENS Lyons)
Abstract

I talk about a recent article of mine that aims at giving an alternative proof to a formula by Carne on random walks. Consider a discrete, reversible random walk on a graph (not necessarily the simple walk); then one has a surprisingly simple formula bounding the probability of getting from a vertex x at time 0 to another vertex y at time t, where it appears a universal Gaussian factor essentially depending on the graph distance between x and y. While Carne proved that result in 1985, through‘miraculous’ (though very pretty!) spectral analysis reasoning, I will expose my own ‘natural' probabilistic proof of that fact. Its main interest is philosophical, but it also leads to a generalization of the original formula. The two main tools we shall use will be techniques of forward and backward martingales, and a tricky conditioning argument to prevent a random walk from being `’too transient'.

Mon, 13 Oct 2008
14:15
Oxford-Man Institute

Drift, draft and structure: modelling evolution in a spatial continuum.

Prof. Alison Etheridge
(Oxford)
Abstract

One of the outstanding successes of mathematical population genetics is Kingman's coalescent. This process provides a simple and elegant description of the genealogical trees relating individuals in a sample of neutral genes from a panmictic population, that is, one in which every individual is equally likely to mate with every other and all individuals experience the same conditions. But real populations are not like this. Spurred on by the recent flood of DNA sequence data, an enormous industry has developed that seeks to extend Kingman's coalescent to incorporate things like variable population size, natural selection and spatial and genetic structure. But a satisfactory approach to populations evolving in a spatial continuum has proved elusive. In this talk we describe the effects of some of these biologically important phenomena on the genealogical trees before describing a new approach (joint work with Nick Barton, IST Austria) to modelling the evolution of populations distributed in a spatial continuum.

Mon, 09 Jun 2008
15:45
Oxford-Man Institute

Brownian Entropic Repulsion

Dr Nathanael Berestycki
(Cambridge)
Abstract

We consider one-dimensional Brownian motion conditioned (in a suitable

sense) to have a local time at every point and at every moment bounded by some fixed constant. Our main result shows that a phenomenon of entropic repulsion occurs: that is, this process is ballistic and has an asymptotic velocity approximately 4.5860... as high as required by the conditioning (the exact value of this constant involves the first zero of a Bessel function). I will also describe other conditionings of Brownian motion in which this principle of entropic repulsion manifests itself.

Joint work with Itai Benjamini.

Mon, 09 Jun 2008
14:10
Oxford-Man Institute

t2/3-scaling of current variance in interacting particle systems

Dr Marton Balazs
(Budapest University of Technology and Economics)
Abstract

Particle current is the net number of particles that pass an observer who moves with a deterministic velocity V. Its fluctuations in time-stationary interacting particle systems are nontrivial and draw serious attention. It has been known for a while that in most models diffusive scaling and the corresponding Central Limit Theorem hold for this quantity. However, such normal fluctuations disappear for a particular value of V, called the characteristic speed.

For this velocity value, the correct scaling of particle current fluctuations was shown to be t1/3 and the limit distribution was also identified by K. Johansson in 2000 and later by P. L. Ferrari and H. Spohn in 2006. These results use heavy combinatorial and analytic tools, and their application is limited to a few particular models, one of which is the totally asymmetric simple exclusion process (TASEP). I will explain a purely probabilistic, more robust approach that provides the t2/3-scaling of current variance, but not the limit distribution, in (non-totally) asymmetric simple exclusion (ASEP) and some other particle systems. I will also point out a key feature of the models which allows the proof of such universal behaviour.

Joint work with Júlia Komjáthy and Timo Seppälläinen)

Mon, 02 Jun 2008
15:45
Oxford-Man Institute

Confined Lagrangian SDES with Eulerian Dirichlet conditions

Dr Mireille Bossy
(INRIA)
Abstract

We construct a kinetic SDE in the state variables (position,velocity), where the spatial dependency in the drift term of the velocity equation is a conditional expectation with respect to the position. Those systems are introduced in fluid mechanic by S. B. Pope and are used in the simulation of complex turbulent flows. Such simulation approach is known as Probability Density Function (PDF) method .

We construct a PDF method applied to a dynamical downscaling problem to generate fine scale wind : we consider a bounded domain D. A weather prediction model solves the wind field at the boundary of D (coarse resolution). In D, we adapt a Lagrangian model to the atmospheric flow description and we construct a particles algorithm to solve it (fine resolution).

In the second part of the talk, we give a (partial) construction of a Lagrangian SDE confined in a given domain and such that the corresponding Eulerian velocity at the boundary is given. This problem is related to stochastic impact problem and existence of trace at the boundary for the McKean-Vlasov equations with specular boundary condition

Mon, 02 Jun 2008
14:15
Oxford-Man Institute

Cameron-Martin Theorem for Riemannian Manifolds

Prof Elton Hsu
(Northwestern University, USA)
Abstract

The Cameron-Martin theorem is a fundamental result in stochastic analysis. We will show that the Wiener measure on a geometrically and stochastically complete Riemannian manifold is quasi-invariant. This is a complete a complete generalization of the classical Cameron-Martin theorem for Euclidean space to Riemannian manifolds. We do not impose any curvature growth conditions.

Mon, 26 May 2008
15:45
Oxford-Man Institute

Gaussian fluctuations for Plancherel partitions

Dr Leonid Bogachev
(Leeds)
Abstract

The limit shape of Young diagrams under the Plancherel measure was found by Vershik & Kerov (1977) and Logan & Shepp (1977). We obtain a central limit theorem for fluctuations of Young diagrams in the bulk of the partition 'spectrum'. More specifically, we prove that, under a suitable (logarithmic) normalization, the corresponding random process converges (in the FDD sense) to a Gaussian process with independent values. We also discuss the link with an earlier result by Kerov (1993) on the convergence to a generalized Gaussian process. The proof is based on the Poissonization of the Plancherel measure and an application of a general central limit theorem for determinantal point processes (joint work with Zhonggen Su).

Mon, 26 May 2008
14:15
Oxford-Man Institute

The McKean stochastic game driven by a spectrally negative Levy process

Dr Erik Baurdoux
(Dept of Statistics London School of Economics)
Abstract

The McKean stochastic game (MSG) is a two-player version of the perpetual American put option. The MSG consists of two agents and a certain payoff function of an underlying stochastic process. One agent (the seller) is looking for a strategy (stopping time) which minimises the expected pay-off, while the other agent (the buyer) tries to maximise this quantity.

For Brownian motion one can find the value of the MSG and the optimal stopping times by solving a free boundary value problem. For a Lévy process with jumps the corresponding free boundary problem is more difficult to solve directly and instead we use fluctuation theory to find the solution of the MSG driven by a Lévy process with no positive jumps. One interesting aspect is that the optimal stopping region for the minimiser "thickens" from a point to an interval in the presence of jumps. This talk is based on joint work with Andreas Kyprianou (University of Bath).

Mon, 19 May 2008
15:45
Oxford-Man Institute

From an analogue of Ewens' measure on the unitary group to the circular Jacobi ensemble

Prof. Ashkan Nikeghbali
(University of Zurich)
Abstract

In the first part of the talk, we fit the Hua-Pickrell measure (which is a two parameters deformation of the Haar measure) on the unitary group and the Ewens measure on the symmetric group in a same framework. We shall see that in the unitary case, the eigenvalues follow a determinantal point process with explicit hypergeometric kernels. We also study asymptotics of these kernels. The techniques used rely upon splitting of the Haar measure and sampling techniques. In the second part of the talk, we provide a matrix model for the circular Jacobi ensemble, which is the sampling used for the Hua-Pickrell measure but this time on Dyson's circular ensembles. In this case, we use the theory of orthogonal polynomials on the unit circle. In particular we prove that when the parameter of the sampling grows with n, both the spectral measure and the empirical spectral measure converge weakly in probability to a non-trivial measure supported only by one piece of the unit circle.

Mon, 19 May 2008
14:15
Oxford-Man Institute

Local approximation and conditioning on Dawson-Watanabe superprocesses

Prof Olav Kallenberg
(Auburn University)
Abstract

We consider a critical, measure-valued branching diffusion ξ in Rd, where the branching is continuous and the spatial motion is given by the heat flow. For d ≥ 2 and fixed t > 0, ξt is known to be an a.s. singular random measure of Hasudorff dimension 2. We explain how it can be approximated by Lebesgue measure on ε-neighbourhoods of the support. Next we show how ξt can be approximated in total variation near n points, and how the associated Palm distributions arise in the limit from elementary conditioning. Finally we hope to explan the duality between moment and Palm measures, and to show how the latter can be described in terms of discrete “Palm trees.”

Mon, 12 May 2008
15:45
Oxford-Man Institute

New solutions and uniqueness results for the variational version of Euler incompressible equations

Dr Filippo Santambrogio
(Paris, Dauphine)
Abstract

Euler equations for incompressible fludis describe the evolution of the divergence-free velocity of a non-viscous fluid (when viscosity is present, we have the well-known Navier-Stokes equations). V. Arnold discovered that they correspond to geodesic equations in the space of volume-preserving diffeomorphisms but several exemples show that it is not always possible to solve the corresponding variational problems inducing minimal energy displacements. A solvable relaxed version, in a non-deterministic setting (measures on the path space, with possible splitting of the particles), has been introduced by Y. Brenier who intensively studied the problem. Together with M. Bernot and A. Figalli we founded new solutions and characterization results. In the talk I'll present the most interesting features of the problem and of its solutions.

Mon, 12 May 2008
14:15
Oxford-Man Institute

Multi-level Monte Carlo

Prof. Des Higham
(Strathclyde)
Abstract

Mike Giles recently came up with a very general technique that improves the fundamental complexity of Monte Carlo simulation in the context where stochastic differential equations are simulated numerically. I will discuss some work with Mike Giles and Xuerong Mao that extends the theoretical support for this approach to the case of financial options without globally Lipschitz payoff functions. I will also suggest other application areas where this multi-level approach might prove valuable, including stochastic computation in cell biology.

Mon, 05 May 2008
15:45
Oxford-Man Institute

TBA

Prof. Dominique Bakry
(Université de Toulouse)
Mon, 05 May 2008
14:15
Oxford-Man Institute

Solving a Backward SDE with the Cubature method

Mr Konstantinos Manolarakis
Abstract

Probabilistic methods for the solution of Backward Stochastic Differential Equations (BSDE) provide us with a new approach to the problem of approximating the solution of a semi-linear PDE. Utilizing on the Markovian nature of these BSDE’s we show how one may consider the problem of numerical solutions to BSDEs within the area of weak approximations of diffusions. To emphasize this point, we suggest an algorithm based on the Cubature method on Wiener space of Lyons - Victoir. Instead of using standard discretization techniques of BSDE’s, we choose to work with the actual flow. This allows to take advantage of estimates on the derivatives of the solution of the associated semi-linear PDE and hence, we recover satisfactory convergence estimates.

Mon, 28 Apr 2008
15:45
Oxford-Man Institute

Some results concerning the q-optimal martingale measure

Dr Sotirios Sabanis
(University of Edinburgh)
Abstract

An important and challenging problem in mathematical finance is how to choose a pricing measure in an incomplete market, i.e. how to find a probability measure under which expected payoffs are calculated and fair option prices are derived under some notion of optimality.

The notion of q-optimality is linked to the unique equivalent martingale measure (EMM) with minimal q-moment (if q > 1) or minimal relative entropy (if q=1). Hobson's (2004) approach to identifying the q-optimal measure (through a so-called fundamental equation) suggests a relaxation of an essential condition appearing in Delbaen & Schachermayer (1996). This condition states that for the case q=2, the Radon-Nikodym process, whose last element is the density of the candidate measure, is a uniformly integrable martingale with respect to any EMM with a bounded second moment. Hobson (2004) alleges that it suffices to show that the above is true only with respect to the candidate measure itself and extrapolates for the case q>1. Cerny & Kallsen (2008) however presented a counterexample (for q=2) which demonstrates that the above relaxation does not hold in general.

The speaker will present the general form of the q-optimal measure following the approach of Delbaen & Schachermayer (1994) and prove its existence under mild conditions. Moreover, in the light of the counterexample in Cerny & Kallsen (2008) concerning Hobson's (2004) approach, necessary and sufficient conditions will be presented in order to determine when a candidate measure is the q-optimal measure.

Mon, 28 Apr 2008
14:15
Oxford-Man Institute

Malliavin calculus and rough paths

Dr Thomas Cass
(Oxford)
Abstract

We present the ideas of Malliavin calculus in the context of rough differential equations (RDEs) driven by Gaussian signals. We then prove an analogue of Hörmander's theorem for this set-up, finishing with the conclusion that, for positive times, a solution to an RDE driven by Gaussian noise will have a density with respect to Lebesgue measure under Hörmander's conditions on the vector fields.

Mon, 21 Apr 2008
15:45
Oxford-Man Institute

The Navier Stokes equation and the Absolute Boundary condition

Mr. Dan Osborne
(Oxford)
Abstract

Let u be a vector field on a bounded domain in R^3. The absolute boundary condition states that both the normal part of u and the tangential part of curl(u) vanish on the boundary. After motivating the use of this condition in the context of the Navier Stokes equation, we prove local (in time) existence with this boundary behaviour. This work is together with Dr. Z. Qian and Prof. G. Q. Chen, Northwestern University.

Mon, 21 Apr 2008
14:15
Oxford-Man Institute

Spectrum of large random graphs

Dr Charles Bordenave
(Université de Toulouse)
Abstract

We will analyze the convergence of the spectrum of large random graphs to the spectrum of a limit infinite graph. These results will be applied to graphs converging locally to trees and derive a new formula for the Stieljes transform of the spectral measure of such graphs. We illustrate our results on the uniform regular graphs, Erdos-Renyi graphs and graphs with prescribed degree distribution. We will sketch examples of application for weighted graphs, bipartite graphs and the uniform spanning tree of n vertices. If time allows, we will discuss related open problems. This is a joint work with Marc Lelarge (INRIA & Ecole Normale Supérieure).

Mon, 03 Mar 2008
14:45
Oxford-Man Institute

Some new results on 1-d self-repelling random walks

Prof. Balint Toth
(Budapest)
Abstract

I will present two new results in the context of the title. Both are joint work with B. Veto.

1. In earlier work a limit theorem with $t^{2/3}$ scaling was established for a class of self repelling random walks on $\mathbb Z$ with long memory, where the self-interaction was defined in terms of the local time spent on unoriented edges. For combinatorial reasons this proof was not extendable to the natural case when the self-repellence is defined in trems of local time on sites. Now we prove a similar result for a *continuous time* random walk on $\mathbb Z$, with self-repellence defined in terms of local time on sites.

2. Defining the self-repelling mechanism in terms of the local time on *oriented edges* results in totally different asymptotic behaviour than the unoriented cases. We prove limit theorems for this random walk with long memory.

Mon, 03 Mar 2008
13:15
Oxford-Man Institute

The allele frequency spectrum associated with the Bolthausen-Sznitman coalescent

Dr Christina Goldschmidt
(Department of Statistics, Oxford)
Abstract

I will take as my starting point a problem which is classical in

population genetics: we wish to understand the distribution of numbers

of individuals in a population who carry different alleles of a

certain gene. We imagine a sample of size n from a population in

which individuals are subject to neutral mutation at a certain

constant rate. Every mutation gives rise to a completely new type.

The genealogy of the sample is modelled by a coalescent process and we

imagine the mutations as a Poisson process of marks along the

coalescent tree. The allelic partition is obtained by tracing back to

the most recent mutation for each individual and grouping together

individuals whose most recent mutations are the same. The number of

blocks of each of the different possible sizes in this partition is

called the allele frequency spectrum. Recently, there has been much

interest in this problem when the underlying coalescent process is a

so-called Lambda-coalescent (even when this is not a biologically

``reasonable'' model) because the allelic partition is a nice example

of an exchangeable random partition. In this talk, I will describe

the asymptotics (as n tends to infinity) of the allele frequency

spectrum when the coalescent process is a particular Lambda-coalescent

which was introduced by Bolthausen and Sznitman. It turns out that

the frequency spectrum scales in a rather unusual way, and that we

need somewhat unusual tools in order to tackle it.

This is joint work with Anne-Laure Basdevant (Toulouse III).

Mon, 25 Feb 2008
14:45
Oxford-Man Institute

Linearly edge-reinforced random walks, part II

Dr Franz Merkl
(Munchen, Germany)
Abstract

We consider a linearly edge-reinforced random walk

on a class of two-dimensional graphs with constant

initial weights. The graphs are obtained

from Z^2 by replacing every edge by a sufficiently large, but fixed

number of edges in series.

We prove that a linearly edge-reinforced random walk on these graphs

is recurrent. Furthermore, we derive bounds for the probability that

the edge-reinforced random walk hits the boundary of a large box

before returning to its starting point.

Part I will also include an overview on the history of the model.

In part II, some more details about the proofs will be explained.

Mon, 25 Feb 2008
13:15
Oxford-Man Institute

Linearly edge-reinforced random walks, part I

Dr Silke Rolles
(Munchen, Germany)
Abstract

We consider a linearly edge-reinforced random walk

on a class of two-dimensional graphs with constant

initial weights. The graphs are obtained

from Z^2 by replacing every edge by a sufficiently large, but fixed

number of edges in series.

We prove that a linearly edge-reinforced random walk on these graphs

is recurrent. Furthermore, we derive bounds for the probability that

the edge-reinforced random walk hits the boundary of a large box

before returning to its starting point.

Part I will also include an overview on the history of the model.

In part II, some more details about the proofs will be explained.

Mon, 11 Feb 2008
14:45
Oxford-Man Institute

Stochastic competition models from ecology to society

Prof. Yuri Kondratiev
(University of Reading)
Abstract

We describe individual based continuous models of random evolutions and discuss some effects of competitions in these models. The range of applications includes models of spatial ecology, genetic mutation-selection models and particular socio-economic systems. The main aim of our presentation is to establish links between local characteristics of considered models and their macroscopic behaviour

Mon, 11 Feb 2008
13:15
Oxford-Man Institute

Constrained Non-smooth Utility Maximization without Quadratic Inf-convolution

Dr Harry Zheng
(London)
Abstract

In this talk we revisit the setting of Bouchard, Touzi, and Zeghal (2004).

For an incomplete market and a non-smooth utility function U defined on the whole real line we study the problem:

sup E [U(XTx,θ – B)]

θΘ(S)

Here B is a bounded contingent claim and Xx,θ represents the wealth process with initial capital x generated by portfolio θ. We study the case when the portfolios are constrained in a closed convex cone.

For the case without constraints and with a smooth utility function the solution method is to approximate the utility function and look at the same problem on a bounded negative domain. However, when one attempts to solve this bounded domain problem for a non-smooth utility function, the standard methods of proof cannot be applied. To circumvent this difficulty the idea of quadratic inf-convolution was introduced in Bouchard, Touzi, and Zeghal (2004). This method is mathematically appealing but leads to lengthy and technical proofs.

We will show that despite the presence of constraints, the dependence on quadratic inf-convolution can be removed. We will also show the existence of a constrained replicating portfolio for the optimal terminal wealth when the filtration is generated by a Brownian motion. This provides a natural generalisation of the results of Karatzas and Shreve (1998) to the whole real line.

Mon, 04 Feb 2008
14:45
Oxford-Man Institute

Asymptotics of killed Markov processes, with applications to the biodemography of ageing

Dr David Steinsaltz
(Oxford)
Abstract

The convergence of Markov processes to stationary distributions is a basic topic of introductory courses in stochastic processes, and the theory has been thoroughly developed. What happens when we add killing to the process? The process as such will not converge in distribution, but the survivors may; that is, the distribution of the process, conditioned on survival up to time t, converges to a "quasistationary distribution" as t goes to infinity.

This talk presents recent work with Steve Evans, proving an analogue of the transience-recurrence dichotomy for killed one-dimensional diffusions. Under fairly general conditions, a killed one-dimensional diffusion conditioned to have survived up to time t either escapes to infinity almost surely (meaning that the probability of finding it in any bounded set goes to 0) or it converges to the quasistationary distribution, whose density is given by the top eigenfunction of the adjoint generator.

These theorems arose in solving part of a longstanding problem in biological theories of ageing, and then turned out to play a key role in a very different problem in population biology, the effect of unequal damage inheritance on population growth rates.

Mon, 04 Feb 2008
13:15
Oxford-Man Institute

A Malliavin calculus approach to a general maximum principle for stochastic control of jump diffusions

Prof. Bernt Oksendal
(Universitetet i Oslo)
Abstract

The classical maximum principle for optimal control of solutions of stochastic differential equations (developed by Pontryagin (deterministic case), Bismut, Bensoussan, Haussmann and others), assumes that the system is Markovian and that the controller has access to full, updated information about the system at all times. The classical solution method involves an adjoint process defined as the solution of a backward stochastic differential equation, which is often difficult to solve.

We apply Malliavin calculus for Lévy processes to obtain a generalized maximum principle valid for non-Markovian systems and with (possibly) only partial information available for the controller. The backward stochastic differential equation is replaced by expressions involving the Malliavin derivatives of the quantities of the system.

The results are illustrated by some applications to finance

Mon, 28 Jan 2008
14:45
Oxford-Man Institute

The Feynman-Kac formula and related problems

Prof. Jiangang Ying
(Fudan University)
Abstract

This talk gives a survey on a series of work which I and co-authors have been doing for 10 years. I will start from the Feynman-Kac type formula for Dirichlet forms. Then a necessary and sufficient condition is given to characterize the killing transform of Markov processes. Lastly we shall discuss the regular subspaces of linear transform and answer some problems related to the Feynman-Kac formula

Mon, 28 Jan 2008
13:15
Oxford-Man Institute

Brownian paths and Representation theory

Prof. Philippe Bougerol
(Paris)
Abstract

Counting paths, or walks, is an important ingredient in the classical representation theory of compact groups. Using Brownian paths gives a new flexible and intuitive approach, which allows to extend some of this theory to the non- cristallographic case. This is joint work with P. Biane and N. O'Connell

Mon, 21 Jan 2008
14:45
Oxford-Man Institute

Isoperimetric bounds under curvature and integrability assumptions

Prof. Franck Barthe
(Toulouse)
Abstract

The Bakry Emery criterion asserts that a probability measure with a strictly positive generalized curvature satisfies a logarithmic Sobolev inequality, and by results of Bakry and Ledoux an isoperimetric inequality of Gaussian type. These results were complemented by a theorem of Wang: if the curvature is bounded from below by a negative number, then under an additional Gaussian integrability assumption, the log-Sobolev inequality is still valid.

The goal of this joint work with A. Kolesnikov is to provide an extension of Wang's theorem to other integrability assumptions. Our results also encompass a theorem of Bobkov on log-concave measures on normed spaces and allows us to deal with non-convex potentials when the convexity defect is balanced by integrability conditions. The arguments rely on optimal transportation and its connection to the entropy functional

Mon, 21 Jan 2008
13:15
Oxford-Man Institute

Accelerated finite difference schemes

Prof. Istvan Gyongy
(Edinburgh)
Abstract

Some recent joint results with N. V. Krylov on the convergence of solutions of finite difference schemes are presented.

The finite difference schemes, considered in the talk correspond to discretizations (in the space variable) of second order parabolic and of second order elliptic (possibly degenerate) equations.

Space derivatives of the solutions to the finite difference schemes are estimated, and these estimates are applied to show that the convergence of finite difference approximations for equations in the whole space can be accelerated to any given rate. This result can be applied to stochastic PDEs, in particular to the Zakai equation of nonlinear filtering, when the signal and observation noises are independent.

Mon, 21 Jan 2008
01:15
Oxford-Man Institute

Accelerated finite difference schemes

Prof. Istvan Gyongy
(Edinburgh)
Abstract

Some recent joint results with N. V. Krylov on the convergence of solutions of finite difference schemes are presented.

The finite difference schemes, considered in the talk correspond to discretizations (in the space variable) of second order parabolic and of second order elliptic (possibly degenerate) equations.

Space derivatives of the solutions to the finite difference schemes are estimated, and these estimates are applied to show that the convergence of finite difference approximations for equations in the whole space can be accelerated to any given rate. This result can be applied to stochastic PDEs, in particular to the Zakai equation of nonlinear filtering, when the signal and observation noises are independent.

Mon, 14 Jan 2008
14:45
Oxford-Man Institute

On some generalized reinforced random walks on integers

Prof. Olivier Raimond
(Universite Paris-Sud XI)
Abstract

This is a joint work with Bruno Schapira, and it is a work in progress.

We study recurrence and transience properties of some edge reinforced random walks on the integers: the probability to go from $x$ to $x+1$ at time $n$ is equal to $f(\alpha_n^x)$ where $\alpha_n^x=\frac{1+\sum_{k=1}^n 1_{(X_{k-1},X_k)=(x,x+1)}}{2+\sum_{k=1}^n 1_{X_{k-1}=x}}$. Depending on the shape of $f$, we give some sufficient criteria for recurrence or transience of these walks

Mon, 14 Jan 2008
13:15
Oxford-Man Institute

Optimal transport and curvature (monge meets Riemann)

Prof. Cedric Villani
(ENS Lyon)
Abstract

Born in France around 1780, the optimal transport problem has known a scientific explosion in the past two decades, in relation with dynamical systems and partial differential equations. Recently it has found unexpected applications in Riemannian geometry, in particular the encoding of Ricci curvature bounds

Mon, 26 Nov 2007

14:45 - 15:45
Oxford-Man Institute

TBA

Prof. Gilles Pages
(Universite de Paris VI)
Mon, 26 Nov 2007

13:15 - 14:15
Oxford-Man Institute

Reflected Brownian motion in a wedge : sum-of-exponential stationary densities

Dr. John Moriarty
(Manchester)
Abstract

Reflected Brownian motion (RBM) in a two-dimensional wedge is a well-known stochastic process. With an appropriate drift, it is positive recurrent and has a stationary distribution, and the invariant measure is absolutely continuous with respect to Lebesgue measure. I will give necessary and sufficient conditions for the stationary density to be written as a finite sum of exponentials with linear exponents. Such densities are a natural generalisation of the stationary density of one-dimensional RBM. Using geometric ideas reminiscent of the reflection principle, I will give an explicit formula for the density in such cases, which can be written as a determinant. Joint work with Ton Dieker.

Mon, 19 Nov 2007

14:45 - 15:45
Oxford-Man Institute

Quadrature of Lipschitz Functionals and Approximation of Distributions

Dr. Klaus Ritter
(Technische Universitat Darmstadt)
Abstract

We study randomized (i.e. Monte Carlo) algorithms to compute expectations of Lipschitz functionals w.r.t. measures on infinite-dimensional spaces, e.g., Gaussian measures or distribution of diffusion processes. We determine the order of minimal errors and corresponding almost optimal algorithms for three different sampling regimes: fixed-subspace-sampling, variable-subspace-sampling, and full-space sampling. It turns out that these minimal errors are closely related to quantization numbers and Kolmogorov widths for the underlying measure. For variable-subspace-sampling suitable multi-level Monte Carlo methods, which have recently been introduced by Giles, turn out to be almost optimal.

Joint work with Jakob Creutzig (Darmstadt), Steffen Dereich (Bath), Thomas Müller-Gronbach (Magdeburg)

Mon, 19 Nov 2007

13:15 - 14:15
Oxford-Man Institute

Dynamical percolation

Prof. Jeffrey Steif
(Chalmers University of Technology)
Abstract

In ordinary percolation, sites of a lattice are open with a given probability and one investigates the existence of infinite clusters (percolation). In dynamical percolation, the sites randomly flip between the states open and closed and one investigates the existence of "atypical" times at which the percolation structure is different from that of a fixed time.

1. I will quickly present some of the original results for dynamical percolation (joint work with Olle Haggstrom and Yuval Peres) including no exceptional times in critical percolation in high dimensions.

2. I will go into some details concerning a recent result that, for the 2 dimensional triangular lattice, there are exceptional times for critical percolation (joint work with Oded Schramm). This involves an interesting connection with the harmonic analysis of Boolean functions and randomized algorithms and relies on the recent computation of critical exponents by Lawler, Schramm, Smirnov, and Werner.

3. If there is time, I will mention some very recent results of Garban, Pete, and Schramm on the Fourier spectrum of critical percolation.

Mon, 12 Nov 2007

14:45 - 15:45
Oxford-Man Institute

Making sense of mixing conditions for spin systems

Professor Mark Jerrum
(Queen Mary University, London)
Abstract

Joint work with Martin Dyer (Leeds) and Leslie Goldberg (Liverpool).

A spin system may be modelled as a graph, in which edges (bonds) indicate interactions between adjacent vertices (sites). A configuration of the system is an assignment of colours (spins) to the vertices of the graph. The interactions between adjacent spins define a certain distribution, the Boltzmann distribution, on configurations. To sample from this distribution it is usually necessary to simulate one of a number of Markov chains on the space of all configurations. Theoretical analyses of the mixing time of these Markov chains usually assume that spins are updated at single vertices chosen uniformly at random. Actual simulations, in contrast, may make (random) updates according to a deterministic, usually highly structured pattern. We'll explore the relationships between systematic scan and random single-site updates, and also between classical uniqueness conditions from statistical physics and more recent techniques in mixing time analysis.

Mon, 12 Nov 2007

13:15 - 14:15
Oxford-Man Institute

A Support Theorem and a Large Deviation Principle for Kunita stochastic flows via Rough Paths

Dr. Steffen Dereich
(Technische Universitat Berlin)
Abstract

In the past the theory of rough paths has proven to be an elegant tool for deriving support theorems and large deviation principles. In this talk I will explain how this approach can be used in the analysis of stochastic flows generated by Kunita SDE's. As driving processes I will consider general Banach space valued Wiener processes

Mon, 05 Nov 2007

14:45 - 15:45
Oxford-Man Institute

SPQR (Skorokhod, Palm, Queueing and Reflection)

Dr. Takis Konstantopoulos
(Heriot Watt University, Edinburgh)
Abstract

The Skorokhod reflection problem, originally introduced as a means for constructing solutions to stochastic differential equations in bounded regions, has found applications in many areas of Probability, for example in queueing-like stochastic dynamical systems; its uses range from methods for proving limit theorems to representations of local times of diffusions and control. In this talk, I will present several applications, e.g. to Levy stochastic networks and to queueing-like systems driven by local times of Levy processes, and give an order-theoretic approach to the problem by extending the domain of functions involved from the real line to a fairly arbitrary partially ordered set. I will also discuss how Palm probabilities can be used in connection with the Skorokhod problem to obtain information about stationary solutions of certain systems.

Mon, 05 Nov 2007

13:15 - 14:15
Oxford-Man Institute

Local Spectral Gaps on the Mean Field Ising Model and Multilevel MCMC methods

Mr. Nikolaus Schweizer
(Universitat Bonn)
Abstract

I consider the Metropolis Markov Chain based on the nearest neighbor random walk on the positive half of the Mean Field Ising Model, i.e., on those vectors from $\{−1, 1\}^N$ which contain more $1$ than $−1$. Using randomly-chosen paths I prove a lower bound for the Spectral Gap of this chain which is of order $N^-2$ and which does not depend on the inverse temperature $\beta$. In conjunction with decomposition results such as those in Jerrum, Son, Tetali and Vigoda (2004) this result may be useful for bounding the spectral gaps of more complex Markov chains on the Mean Field Ising Model which may be decomposed into Metropolis chains. As an example, I apply the result to two Multilevel Markov Chain Monte Carlo algorithms, Swapping and Simulated Tempering. Improving a result by Madras and Zheng (2002), I show that the spectral gaps of both algorithms on the (full) Mean Field Ising Model are bounded from below by the reciprocal of a polynomial in the lattice size $N$ and in the inverse temperature $\beta$.

Mon, 29 Oct 2007
14:45
Oxford-Man Institute

On signed probability measures and some old results of Krylov

Prof. Terry Lyons
(Oxford)
Abstract

It is an interesting exercise to compute the iterated integrals of Brownian Motion and to calculate the expectations (of polynomial functions of these integrals).

Recent work on constructing discrete measures on path space, which give the same value as Wiener measure to certain of these expectations, has led to promising new numerical algorithms for solving 2nd order parabolic PDEs in moderate dimensions. Old work of Krylov associated finitely additive signed measures to certain constant coefficient PDEs of higher order. Recent work with Levin allows us to identify the relevant expectations of iterated integrals in this case, leaving many interesting open questions and possible numerical algorithms for solving high dimensional elliptic PDEs.

Mon, 29 Oct 2007
13:15
Oxford-Man Institute

From super Poincare to weighted log-sobolev and transportation cost inequalities

Prof. Feng-Yu Wang
(University of Wales)
Abstract

Log-Sobolev inequalities with weighted square field are derived from a class of super Poincaré inequalities. As applications, stronger versions of Talagrand's transportation-cost inequality are provided on Riemannian manifolds. Typical examples are constructed to illustrate these results.

Mon, 22 Oct 2007
15:45
Oxford-Man Institute

The continuous limit of random planar maps

Professor Jean Francois Le Gall
(ENS, France)
Abstract

We discuss the convergence in distribution of rescaled random planar maps viewed as random metric spaces. More precisely, we consider a random planar map M(n), which is uniformly distributed over the set of all planar maps with n faces in a certain class. We equip the set of vertices of M(n) with the graph distance rescaled by the factor n to the power 1/4. We then discuss the convergence in distribution of the resulting random metric spaces as n tends to infinity, in the sense of the Gromov-Hausdorff distance between compact metric spaces. This problem was stated by Oded Schramm in his plenary address paper at the 2006 ICM, in the special case of triangulations.

In the case of bipartite planar maps, we first establish a compactness result showing that a limit exists along a suitable subsequence. Furthermore this limit can be written as a quotient space of the Continuum Random Tree (CRT) for an equivalence relation which has a simple definition in terms of Brownian labels attached to the vertices of the CRT. Finally we show that any possible limiting metric space is almost surely homomorphic to the 2-sphere. As a key tool, we use bijections between planar maps and various classes of labelled trees.

Mon, 22 Oct 2007
14:15
Oxford-Man Institute

Slow energy dissipation in anharmonic chains

Dr. Martin Hairer
(University of Warwick)
Abstract

We study the dynamic of a very simple chain of three anharmonic oscillators with linear nearest-neighbour couplings. The first and the last oscillator furthermore interact with heat baths through friction and noise terms. If all oscillators in such a system are coupled to heat baths, it is well-known that under relatively weak coercivity assumptions, the system has a spectral gap (even compact resolvent) and returns to equilibrium exponentially fast. It turns out that while it is still possible to show the existence and uniqueness of an invariant measure for our system, it returns to equilibrium much slower than one would at first expect. In particular, it no longer has compact resolvent when the potential of the oscillators is quartic and the spectral gap is destroyed when it grows even faster.

Mon, 15 Oct 2007
14:15
Oxford-Man Institute

TBA

Professor Dimitri Kramkov
(Oxford and Carnegie Mellon University)