The ambitwistor string of Mason and Skinner has been very successful in describing field theory amplitudes, at both loop and tree-level for a variety of theories. But the original action given by Mason and Skinner is already partially gauge-fixed, which obscures some issues related to modular invariance and the connection to conventional string theories. In this talk I will argue that the Null string is the ungauge-fixed version of the Ambitwistor string. This clarifies the geometry of the original Ambitwistor string and gives a road map to understanding modular invariance, and gives new formulas for loop amplitudes in which we expect that UV divergences will be easier to analyse.

# Past String Theory Seminar

In this talk I will argue that a systematic classification of 4d N=2 superconformal field theories is possible through a careful analysis of the geometry of their Coulomb branches. I will carefully describe this general framework and then carry out the classification explicitly in the rank-1, that is one complex dimensional Coulomb branch, case. We find that the landscape of rank-1 theories is still largely unexplored and make a strong case for the existence of many new rank-1 SCFTs, almost doubling the number of theories already known in the literature. The existence of 4 of them has been recently confirmed using alternative methods and others have an enlarged N=3, supersymmetry.

While our study focuses on Coulomb Branch geometries, we can extract much more information about these SCFTs. I will spend the last part of my talk outlining what else we can learn and the extent in which our study can be complementary to other method to study SCFTs (Conformal Bootstrap above all!).

In this talk I will introduce methods to use 2d gauge theories as a means to describe Calabi-Yau varieties and their moduli spaces. As I review, this description furnishes a natural framework to predict derived equivalences between pairs of (sometimes even non-birational) Calabi-Yau varieties. A prominent example of this kind is realized by the Rødland non-birational pair of Calabi-Yau threefolds.

Using the 2d gauge theory description, I will propose further examples of derived equivalences among non-birational Calabi-Yau varieties.

In 3d gauge theories, monopole operators create and destroy vortices. I will explore this idea in the context of 3d N = 4 supersymmetric gauge theories and explain how it leads to an exact calculation of quantum corrections to the Coulomb branch and a finite version of the AGT correspondence.

*In this talk I will discuss some features of interacting conformal higher spin theories in 2+1 dimensions. This is done in the context of Chern-Simons theory (giving e.g. the complete spin 2 covariant spin 3 sector) and a higher spin coupled unfolded equation for the scalar singleton. One motivation for studying these theories is that their non-linear properties are rather poorly understood contrary to the situation for the Vasiliev type theory in this dimension which is under much better control. Another reason for the interest in these theories comes from AdS4/CFT3 and the possibility that Neumann/mixed bc for bulk higher spin fields may lead to conformal higher spin fields governed by Chern-Simons terms on the boundary. These theories generalise the spin 2 gauged BLG-ABJ(M) theories found a few years ago to higher spins than 2.*

*A Fueter map between two hyperKaehler manifolds is a solution of a Cauchy-Riemann-type equation in the quaternionic context. In this talk I will describe relations between Fueter maps, generalized Seiberg-Witten equations, and Yang-Mills instantons on G2-manifolds (so called G2-instantons).*

Calabi-Yau spaces provide well-understood examples of supersymmetric vacua in supergravity. The supersymmetry conditions on such spaces can be rephrased as the existence and integrability of a particular geometric structure. When fluxes are allowed, the conditions are more complicated and the analogue of the geometric structure is not well understood.

In this talk, I will review work that defines the analogue of Calabi-Yau geometry for generic D=4, N=2 supergravity backgrounds. The geometry is characterised by a pair of structures in generalised geometry, where supersymmetry is equivalent to integrability of the structures. I will also discuss the extension AdS backgrounds, where deformations of these geometric structures correspond to exactly marginal deformations of the dual field theories.

M5-branes on 4-manifolds M_4 realized as co-associatives in G_2 give rise to 2d (0,2) superconformal theories. In this talk I will propose a duality between these 2d (0,2) theories and 4d topological theories, which are sigma-models from M_4 into the Nahm moduli space.

*I will review the recently exposed connection between N=2 superconformal field theories in four dimensions and vertex operator algebras (VOAs). I will outline some general features of the VOAs that arise in this manner and describe the manner in which they reflect four-dimensional operations such as gauging and Higgsing. Time permitting, I will also touch on the modular properties of characters of these VOAs.*

Pure spinor space, a cone over orthogonal Grassmannian OGr(5,10), is a central concept in the Berkovits formulation of string theory. The space of states of the beta-gamma system on pure spinors is tensor factor in the Hilbert space of string theory . This is why it would be nice to have a good definition of this space of states. This is not a straightforward task because of the conical singularity of the target. In the talk I will explain a strategy for attacking conical targets. In the case of pure spinors the method gives a formula for partition function of pure spinors.