Breakthroughs in machine learning have led to impressive results in numerous fields in recent years. I will review some of the best-known results on the computer science side, provide simple ways to think about the associated techniques, discuss possible applications in string theory, and present some applications in string theory where they already exist. One promising direction is using machine learning to generate conjectures that are then proven by humans as theorems. This method, sometimes referred to as intelligible AI, will be exemplified in an enormous ensemble of F-theory geometries that will be featured throughout the talk.

# Past String Theory Seminar

In this talk we will discuss non-Abelian T-duality as a solution generating technique in type II Supergravity, briefly reviewing its potential to motivate, probe or challenge classifications of supersymmetric solutions, and focusing on the open problem of providing the newly generated AdS brackgrounds with consistent dual superconformal field theories. These can be seen as renormalization fixed points of linear quivers of increasing rank. As illustrative examples, we consider the non-Abelian T-duals of AdS5xS5, the Klebanov-Witten background, and the IIA reduction of AdS4xS7, whose proposed quivers are, respectively, the four dimensional N=2 Gaiotto-Maldacena theories describing the worldvolume dynamics of D4-NS5 brane intersections, its N=1 mass deformations realized as D4-NS5-NS5’, and the three dimensional N=4 Gaiotto-Witten theories, corresponding to D3-D5-NS5. Based on 1705.09661 and 1609.09061.

The horizon conjecture, proved in a case by case basis, states that every supersymmetric smooth horizon admits an sl(2, R) symmetry algebra. However it is unclear how string corrections modify the statement. In this talk I will present the analysis of supersymmetric near-horizon geometries in heterotic supergravity up to two loop order in sigma model perturbation theory, and show the conditions for the horizon to admit an sl(2, R) symmetry algebra. In the second part of the talk, I shall consider the inverse problem of determining all extreme black hole solutions associated to a prescribed near-horizon geometry. I will expand the horizon fields in the radial co-ordinate, the so-called moduli, and show that the moduli must satisfy a system of elliptic PDEs, which implies that the moduli space is finite dimensional.

The talk is based on arXiv:1605.05635 [hep-th] and arXiv:1610.09949 [hep-th].

I will start with briefly describing the HISH ( Holography Inspired Hadronic String) model and reviewing the fits of the spectra of mesons, baryons, glue-balls and exotic hadrons.

I will present the determination of the hadron strong decay widths. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as $\Gamma =\frac{\pi}{2}A T L $ where T and L are the tension and length of the string and A is a dimensionless universal constant. The partial width of a given decay mode is given by $\Gamma_i/\Gamma = \Phi_i \exp(-2\pi C m_\text{sep}^2/T$ where $\Phi_i$ is a phase space factor, $m_\text{sep}$ is the mass of the "quark" and "antiquark" created at the splitting point, and C is adimensionless coefficient close to unity. I will show the fits of the theoretical results to experimental data for mesons and baryons. I will examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons $A = 0.095\pm 0.01$ is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. I will discuss the relation with string fragmentation and jet formation. I will extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia will be proposed and will be shown to reproduce the decay width of states. The dependence of the width on spin and symmetry will be discussed. I will further apply this model to the decays of glueballs and exotic hadrons.

We study the spectrum of local operators living on a defect in a generic conformal field theory, and their coupling to the local bulk operators. We establish the existence of universal accumulation points in the spectrum at large s, s being the charge of the operators under rotations in the space transverse to the defect. Our main result is a formula that inverts the bulk to defect OPE, analogous to the Caron-Huot formula for the four-point function of CFTs without defects.

I am interested in the moduli spaces of heterotic vacua. These are closely related to the moduli spaces of stable holomorphic bundles but in which the base and bundle vary simultaneously, together with additional constraints deriving from string theory. I will first summarise some pre-Brexit results we have derived. These include an explicit Kaehler metric and Kaehler potential for both the moduli space and its first cousin, the matter field space. I will secondly describe new, post-Brexit work in which these results are encased within an elegant geometry, which we call a universal heterotic geometry. Beyond compelling aesthetics, the framework is surprisingly useful giving both a concise derivation of our pre-Brexit results as well as some new results.

M-theory on K3 surfaces and Heterotic Strings on T^3 give rise to dual theories in 7 dimensions. Applying this duality fibre-wise is expected to connect G2 manifolds with Calabi-Yau threefolds (together with vector bundles). We make these ideas explicit for a class of G2 manifolds realized as twisted connected sums and prove the equivalence of the spectra of the dual theories. This naturally gives us examples of singular TCS G2 manifolds realizing non-abelian gauge theories with non-chiral matter.

I will present a new approach to study the RG flow in 3d N=4 gauge theories, based on an analysis of the Coulomb branch of vacua. The Coulomb branch is described as a complex algebraic variety and important information about the strongly coupled fixed points of the theory can be extracted from the study of its singularities. I will use this framework to study the fixed points of U(N) and Sp(N) gauge theories with fundamental matter, revealing some surprising scenarios at low amount of matter.

We consider the one parameter mirror families W of the Calabi-Yau 3-folds with Picard-Fuchs equations of hypergeometric type. By mirror symmetry the even D-brane masses of orginial Calabi-Yau manifolds M can be identified with four periods with respect to an integral symplectic basis of $H_3(W,\mathbb{Z})$ at the point of maximal unipotent monodromy. We establish that the masses of the D4 and D2 branes at the conifold are given by the two algebraically independent values of the L-function of the weight four holomorphic Hecke eigenform with eigenvalue one of $\Gamma_0(N)$. For the quintic in $\mathbb{P}^4$ it this Hecke eigenform of $\Gamma_0(25)$ was as found by Chad Schoen. It was discovered by de la Ossa, Candelas and Villegas that its coefficients $a_p$ count the number of solutions of the mirror quinitic at the conifold over the finite number field $\mathbb{F}_p$ . Using the theory of periods and quasi-periods of $\Gamma_0(N)$ and the special geometry pairing on Calabi-Yau 3 folds we can fix further values in the connection matrix between the maximal unipotent monodromy point and the conifold point.